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a b s t r a c t

A new method is proposed for fast and accurate computation of Zernike moments. This
method presents a novel formula for computing exact Zernike moments by using exact
complex moments where the exact values of complex moments are computed by mathe-
matical integration of the monomials over digital image pixels. The proposed method is
applicable to compute the full set of Zernike moments as well as the subsets of individual
order, repetition and an individual moment. A comparison with other conventional meth-
ods is performed. The results show the superiority of the proposed method.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Orthogonal circular moments are defined by mapping an image onto a set of orthogonal complex polynomials. Orthog-
onal moments such as Zernike were first introduced by Teague [26]. According to the orthogonal property, Zernike moments
are used to represent an image with the minimum amount of information redundancy [27]. In addition to this essential prop-
erty, orthogonal Zernike moments are rotational and flipping invariants by nature, while the other kinds of invariance such
as translation and scale invariants are achieved through the normalization of their basic polynomials [13]. Due to these char-
acteristics, Zernike moments have been widely used in pattern recognition applications [1,3,28,29], content-based image re-
trieval [14,17,19], watermarking and data hiding [4,15], biometrics [5,16], edge detection [25], texture analysis [2], image
analysis [21] and biomedical engineering [12].

Computational processes of orthogonal moments are time-consuming. Valuable works are proposed in order to efficiently
compute different kinds of orthogonal moments [11,23]. Direct computations of Zernike moments through their polynomials
are time-consuming. The direct method is impractical in any real world application. Conventional methods for orthogonal
Zernike moment’s computation produced two types of errors [20]. Consequently, these conventional methods encounter
three challenging problems. The optimal method is the one that can overcome or at least minimize the negative effects of
these problems.

To tackle the aforementioned problems, there are different groups of existing methods for Zernike moment’s computa-
tions. In the first group, authors paid their attention to speeding up the computation [6,18,22,24,30]. On the other side,
authors paid their attention to increase the accuracy of the computed Zernike moments [7,10].

This paper proposes a systematic method for fast and accurate computation of full and subsets Zernike moment for binary
and gray level images. In order to achieve the accuracy, the 2D Zernike moments are exactly computed as a combination of
. All rights reserved.
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exact complex moments where the latter are computed exactly by using a mathematical integration of monomials over dig-
ital image pixels. The approximation error is completely removed by using the exact computation form. The negative effect
of the geometric error is minimized through a proper square to circular transformation where the whole image is completely
mapped inside the unit disk. This kind of mapping overcomes the problem of lost information encountered in the conven-
tional methods. To speed up the computation, novel formulae are proposed for systematic and easily programmable com-
putation of the full and subsets of any selected Zernike moments.

Computation of selected subsets of Zernike moments is suitable for the problem of data hiding by using Zernike moments.
Selection process of Zernike moments in data hiding is a critical process, where the selected moments must be the most
accurate. As discussed in [31], the moments with repetition q ¼ 4i with integer i cannot be computed accurately. Therefore,
these moments are not suitable for data hiding. The set S of desirable Zernike moments to be selected for carrying the water-
mark is S ¼ fZpq : q 6 Max; q P 0; q – 4ig; where Max is the maximum order of Zernike moments.

Numerical experiments clearly show that the proposed method is an accurate and very fast method. This ensures the
superiority of the proposed method over the conventional ones.

The rest of the paper is organized as follows: In Section 2, a brief discussion of Zernike moments and the ZOA approxi-
mation computation are given. Section 3 gives an overview of few existing methods for Zernike moment computation. In
Section 4, a detailed description of the proposed method is presented. Section 5 is devoted to numerical experiments. Con-
clusion and concluding remarks are presented in Section 6.

2. Zernike moments

Orthogonal circular Zernike moments are defined by using complex Zernike polynomials. These polynomials are defined
inside a unit circle in polar coordinates, where the p-order Zernike polynomial with repetition q is defined as:
Vpqðr; hÞ ¼ SpqðrÞeîqh ð1Þ
where î ¼
ffiffiffiffiffiffiffi
�1
p

; p ¼ 0;1;2;3; . . .1; the integer q takes positive or zero values according to the conditions 0 6 q 6 p and
(p�q) is even. In other words, p is even if q is even and odd if q is odd. Zernike polynomials,Vpqðr; hÞ, form a complete orthog-
onal set where their orthogonality relation is defined as follows:
Z 2p

0

Z 1

0
Vnmðr; hÞV�pqðr; hÞr dr dh ¼

p
ðpþ1Þ ; p ¼ n; q ¼ m

0; otherwise

(
ð2Þ
The asterisk symbol * refers to the complex conjugate. The real-valued radial Zernike polynomials SpqðrÞ are defined as:
SpqðrÞ ¼
Xp�q

2

k¼0

ð�1Þk ðp� kÞ!
k! pþq

2 � k
� �

! p�q
2 � k

� �
!
rðp�2kÞ ð3Þ
Like all orthogonal and complete basis, the Zernike polynomials can be used to decompose an analog image intensity func-
tion, f ðr; hÞ, as follows:
f ðr; hÞ ¼
X1
p¼0

Xp

q¼0
p�q¼even

ZpqVp;qðr; hÞ ð4Þ
The coefficients Zpq are called 2D Zernike moments of order p and repetition q and defined in polar coordinates as follows:
Zpq ¼
pþ 1

p

Z 2p

0

Z 1

0
V�pqðr; hÞf ðr; hÞr dr dh ð5Þ
Zernike moments with negative values of q could be obtained by using the relation Zp;�q ¼ Z�p;q. Since the summation to infin-
ity is impossible in computing community, Zernike moments of maximum order equal to Max can be considered where the
image intensity function is approximated as follows:
f̂ Maxðr; hÞ �
XMax

p¼0

Xp

q¼0
p�q¼even

ZpqVp;qðr; hÞ; ð6Þ
The total number of Zernike moments used to reconstruct an image is defined by:
NTotal ¼
Maxþ2

2

� �2
; Max is even

Maxþ1
2

� �2 þ Maxþ1
2

� �
; Max is odd

(
ð7Þ
The image reconstruction from orthogonal moments only adds the individual components of each order to generate the
reconstructed image. Low order moments are employed as global descriptors while in many cases, high order moments are
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required to represent the fine details of the image/object. Recently, Zernike moments have been employed in the area of
molecular computational biology for comparing small molecules, macromolecules, and protein binding backets.

Eq. (6) could be rewritten in a form to reconstruct image intensity function by using the expansion with only real-valued
functions as follows [13]:
f̂ Maxðx; yÞ �
Rp0

2
Sp0ðrÞ þ

XMax

p¼1

Xp

q¼0
p�q¼even

ðRpq cosðqhÞ þ Ipq sinðqhÞÞSpqðrÞ ð8Þ
where Rpq and Ipq are the real and imaginary parts of complex Zernike moments Zpq and defined as:
Rpq ¼ 2ReðZpqÞ ð9:1Þ
Ipq ¼ �2Im ðZpqÞ ð9:2Þ
Zernike moments are by nature rotational invariants where their magnitude values are unaffected and remain the same for
original and rotated images. Assume that the superscript ”Rot” refers to a counterclockwise rotation by angle a. If the original
image function is f ðr; hÞ and the rotated one is f Rotðr; h� aÞ, then we can write ZRot

p;q ¼ e�̂iqhZp;q. Since the value je�îqhj ¼ 1, the
magnitude values of Zernike before and after image rotation are identical.

2.1. Approximate computation of Zernike moments

Computation of Zernike moments by using Eq. (5) is impossible where Zernike polynomials are defined in terms of polar
coordinates ðr; hÞ over a unit disk while the image intensity function is always defined in Cartesian coordinates (x, y). Con-
sequently, a transformation approach must be defined to overcome this inconsistent problem. Zernike polynomials are con-
verted to be defined in the Cartesian coordinates where the image is transformed to be defined in the same domain. The
square image is mapped onto the unit disk as depicted in Fig. 1 where the center of the image is the coordinate origin.
For a digital image of size N �M, the transformed coordinates are written as:
rij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2i� N þ 1

N � 1

� �2

þ 2j�M þ 1
M � 1

� �2
s

ð10Þ

hij ¼ tan�1 ð2j�M þ 1Þ=ðM � 1Þ
ð2i� N þ 1Þ=ðN � 1Þ

� �
ð11Þ
with i ¼ 0;1;2; . . . ::;N � 1; j ¼ 0;1;2; . . . ;M � 1 and 0 6 rij 6 1. Approximate Zernike moments are direct results of replacing
integrals with summations. To compute Zernike moments of discrete-version of the image intensity function, the integrals in
Eq. (5) are replaced by summations and the image is normalized inside the unit disk by using image mapping transformation.
Based on the principles of mathematical analysis, summations are equivalent to integrals only as the number of sampling
points reached infinity. Therefore, the numerical error increases as the number of sampling points decreases. Also, this error
increased as the order of moments increased where numerical instabilities are encountered. The zeroth-order approximate
(ZOA) Zernike moments of an image size N �M are [20]:
eZpq ¼
pþ 1

kp

XN�1

i¼0

XM�1

j¼0

SpqðrijÞe�îqhij f ði; jÞ ð12Þ
Fig. 1. (a) Image plane. (b) The square image is mapped onto the unit disk.
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where kp is the total number of pixels that achieve the condition jrijj 6 1. This number is usually less than the total number of
pixels of original image where all pixels with radius greater than the unity are ignored. Eq. (12) is not a very accurate approx-
imation of Eq. (5).

3. Previous methods for computing zernike moments

In this section, a quick review of the previously published methods for computing Zernike moments is presented. A num-
ber of works concentrate on speeding up the computation of real-valued radial Zernike function. Kintner [18], Prata and Rus-
ch [24] have proposed recurrence relations for fast computation of radial polynomials of Zernike moments. Chong et al. [6]
modified Kintner method to be applicable for all cases of order p and repetition q. Wee et al. [30] have proposed a hybrid
method that combines a simplified Kintner’s method and other existing methods. Unfortunately, all of these methods are
not fast enough and compute Zernike moments approximately by using the ZOA approximation formula in Eq. (12).

3.1. Direct method

The direct method is very time-consuming where computing Zernike moments by using Eq. (12) required the evaluation
of the real-valued radial polynomials defined by Eq. (3). This method required four factorial calculations for every real-val-
ued radial polynomial SpqðrÞ. In addition to very long elapsed CPU times, approximated Zernike moments suffer from numer-
ical instabilities where the numerical errors are accumulated. Chong et al. [6] clearly show that, it is necessary to develop
new methods for avoiding numerical instabilities when the image size is large.

3.2. Coefficient method

Real-valued radial polynomials defined by using Eq. (3) could be rewritten in a simple way as follows [6]:
SpqðrÞ ¼
Xp

k¼q
p�k¼even

Bpqkrk ð13Þ
The coefficients Bpqk of real-valued radial Zernike polynomials are defined as:
Bpqk ¼
ð�1Þððp�kÞ=2Þ pþk

2

� �
!

p�k
2

� �
! kþq

2

� �
! k�q

2

� �
!

ð14Þ
Instead of the time-consuming computation process of the coefficients Bpqk by using Eq. (14), recurrence relations are used to
efficiently compute these coefficients as follows:
Bppp ¼ 1 ð15:1Þ

Bpðq�2Þp ¼
pþ q

p� qþ 2
Bpqp ð15:2Þ

Bpqðk�2Þ ¼ �
ðkþ qÞðk� qÞ
ðpþ kÞðp� kþ 2ÞBpqk ð15:3Þ
It is clear that, the values of coefficients Bpqk are image-independent; therefore, it could be pre-computed and stored for fur-
ther use.

3.3. Kintner’s method

Kintner [18] proposed a recurrence relation that uses polynomials with low order p and a fixed repetition q to compute
the real-valued radial polynomials SpqðrÞ as follows:
SpqðrÞ ¼
ðK2r2 þ K3ÞSðp�2ÞqðrÞ þ K4Sðp�4ÞqðrÞ

K1
ð16Þ
where K1;K2;K3 and K4 are defined as:
K1 ¼
ðpþ qÞðp� qÞðp� 2Þ

2
ð17:1Þ

K2 ¼ 2pðp� 1Þðp� 2Þ ð17:2Þ
K3 ¼ �q2ðp� 1Þ � pðp� 1Þðp� 2Þ ð17:3Þ

K4 ¼ �
pðpþ q� 2Þðp� q� 2Þ

2
ð17:4Þ
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As discussed previously, Kintner’s method cannot be applied in cases where p ¼ q and p� q ¼ 2. For these two cases, the
direct method is used. This is a weak point where more time demands are added which degrades the efficiency of this meth-
od. Chong et al. [6] proposed a modification for Kintner’s method and called it the modified kintner. Instead of using the di-
rect method, they proposed the following relations to overcome Kintner’s special case limitations:
Sp;pðrÞ ¼ rp; p ¼ q ð18Þ
Sðpþ2Þ;pðrÞ ¼ ðpþ 2ÞSðpþ2Þ;ðpþ2ÞðrÞ � ðpþ 1ÞSp;pðrÞ; p� q ¼ 2 ð19Þ
Wee et al. [30] presents what is called simplified Kintner’s method. This method requires multiplications and additions pro-
cesses less than that of the original and modified version proposed in [6]. The simplified Kintner’s method uses Eqs. (18) and
(19) in addition to the following relations:
SpqðrÞ ¼ ðM1r2 þM2ÞSðp�2ÞqðrÞ þM3Sðp�4ÞqðrÞ ð20Þ
where the coefficients M1; M2 and M3 are defined as:
M1 ¼
4pðp� 1Þ
ðpþ qÞðp� qÞ ð21:1Þ

M2 ¼ �
2ðp� 1Þðp2 � 2pþ q2Þ
ðpþ qÞðp� qÞðp� 2Þ ð21:2Þ

M3 ¼ �
pðpþ q� 2Þðp� q� 2Þ
ðpþ qÞðp� qÞðp� 2Þ ð21:3Þ
3.4. q-Recursive method

Chong et al. [6] proposed a new method for fast computation of real-valued radial polynomials of order p and a repetition
q by using three recurrence relations. The first relation is employed for p ¼ q. The second relation with the first one is used to
compute the radial polynomials with ðp� qÞ ¼ 2. The third relation is used to compute the rest of all radial polynomials.
These relations are:
Sp;pðrÞ ¼ rp ð22Þ
Sp;ðp�2ÞðrÞ ¼ pSp;pðrÞ � ðp� 1ÞSðp�2Þ;ðp�2Þ ð23Þ

Sp;ðq�4ÞðrÞ ¼ L1Sp;qðrÞ þ L2 þ
L3

r2

� �
Sp;ðq�2ÞðrÞ ð24Þ
where L1; L2; L3 and L4 are defined as:
L3 ¼ �
4ðq� 2Þðq� 3Þ

ðpþ q� 2Þðp� qþ 4Þ ð25:1Þ

L2 ¼ ðq� 2Þ þ L3ðp� qþ 2Þðpþ qÞ
4ðq� 1Þ ð25:2Þ

L1 ¼
qðq� 1Þ

2
� qL2 þ

L3ðpþ qþ 2Þðp� qÞ
8

ð25:3Þ
3.5. Hybrid method

Wee et al. [30] proposed a hybrid method for fast computation of real-valued radial polynomials of order p and repetition
q. This method is applicable for fast computation of full set and subsets of Zernike moments. In fact, the full set of radial
polynomials is computed by using the fusion of four different relations. Eq. (18) is implemented in the case of p ¼ q. Eq.
(19) is used to compute the radial polynomials where p� q ¼ 2. For q ¼ 0 and the value of p starting from 4, the modified
Kintner’s method is applied. The rest of the radial polynomials are computed by using Prata’s relation [24]:
Sp;qðrÞ ¼
2rp

pþ q

� �
Sðp�1Þ;ðq�1ÞðrÞ �

p� q
pþ q

� �
Sðp�2Þ;qðrÞ ð26Þ
4. The proposed method

A digital image of size N �M is an array of pixels. The centers of these pixels are the points ðxi; yjÞ, where the image inten-
sity function is defined as shown in Fig. 2a. A circular to square mapping method is applied as shown in Fig. 2b where the

whole image is mapped inside the unit disk. The transformed image is defined in the square �1=
ffiffiffi
2
p

;1=
ffiffiffi
2
pj k

� �1=
ffiffiffi
2
p

;
j

1=
ffiffiffi
2
p
c. The transformed image coordinates are defined as:



Fig. 2. (a) Digital image with intensity function defined at center of pixels. (b) Mapping of the digital image inside the unit circle.
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xi ¼
2i� N � 1

N
ffiffiffi
2
p ; yj ¼

2j�M � 1
M

ffiffiffi
2
p ð27Þ

rij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

i þ y2
j

q
; hij ¼ tan�1ðyj=xiÞ ð28Þ
with i ¼ 1;2; . . . ;N and j ¼ 1;2; . . . ;M. The transformed sampling intervals are:
Dxi ¼
ffiffiffi
2
p

=N; Dyj ¼
ffiffiffi
2
p

=M ð29Þ
4.1. Exact Zernike moments

Zernike moments and the complex moments are related by [27]:
Zpq ¼
pþ 1

p
Xp

k¼jqj
p�k¼even

BpqkCk�q
2 ;

kþq
2

ð30Þ
where Bpqk refers to the coefficients of Zernike polynomials defined by Eq. (14) and Cp;q are the complex moments of order
ðpþ qÞ defined by Eq. (40). Zernike moments could be easily computed according to the difference between the moment or-
der p and the repetition q as shown in Fig. 3. Eqs. (31)–(34) are examples. Eq. (31) is used to compute Zernike moments when
the difference between the order p and the repetition q is zero. For difference equals 2, 4 and 6, Eqs. (32)–(34) handle these
cases respectively. This procedure is continuous where the difference increases and reaches its maximum value.
Fig. 3. Zernike moments computed according to the difference ‘‘m” between the moment order p and the repetition q.
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Zp;p ¼
pþ 1

p
C0;p ð31Þ

Zp;p�2 ¼
pþ 1

p
ðBp;p�2;p�2C0;p�2 þ Bp;p�2;pC1;p�1Þ ð32Þ

Zp;p�4 ¼
pþ 1

p
ðBp;p�4;p�4C0;p�4 þ Bp;p�4;p�2C1;p�3 þ Bp;p�4;pC2;p�2Þ ð33Þ

Zp;p�6 ¼
pþ 1

p
Bp;p�6;p�6C0;p�6 þ Bp;p�6;p�4C1;p�5 þ Bp;p�6;p�2C2;p�4 þ Bp;p�6;pC3;p�3ð Þ ð34Þ
The full set of exact Zernike moments with maximum order Max are computed by using the following novel
formulae:
Zp;p ¼
pþ 1

p
C0;p ð35Þ

Zp;p�m ¼
pþ 1

p
Xm

2b c

i¼0

Bp;p�m;p�2iCm
2�i;p�m

2�i ð36Þ
where p ¼ 0;1;2; . . . ::;Max; m 6 p; p�m ¼ even; m is an integer starting with 2 and increases with step 2. The maximum
value of m is Max. The value of the operator m

2

	 

equal to ðm� 1Þ=2 if m is odd; otherwise is equal to m/2. The following pseu-

do-code is applied for computing the full set of Zernike moments by using the proposed method.
for p = 0 : 1: Max

Z p;p ¼ ððpþ 1Þ=piÞ�C0;p;
endfor

for m = 2 : 2: Max

for p = m : 1: Max

Compute Zp;p�m using Eq. (36);
endfor

endfor

Pseudo-code for computing full set of Zernike moments
Through the next subsections we demonstrate how Eqs. (35) and (36) are adapted to compute different special cases.

4.1.1. Subset Zernike moments of selected order
Zernike moments of a selected order represent a subset of the full set of Zernike moments. For a specific order ps ¼ 10, the

subset Zernike moments for this selected order is Z10;0; Z10;2; Z10;4; Z10;6; Z10;8; Z10;10
� �

. Subset Zernike moments of the selected
orderps is easily computed as follows:
Zps ;ps�m ¼
ps þ 1

p
Xm

2b c

i¼0

Bps ;ps�m;ps�2iCm
2�i;ps�m

2�i ð37Þ
where m is an integer starting with zero and increases with step 2. The maximum value of m is ps.
read ps;
for m = 0 : 2: ps

Compute Zps;ps-m using Eq. (37);
endfor

Pseudo-code for computing subset of Zernike moments of the selected order ps
4.1.2. Subset Zernike moments of selected repetition
Zernike moments with a selected repetition represent a subset of the full set of Zernike moments. For a maximum order

Max = 10, the subset of Zernike moments for a repetition pr ¼ 3 is fZ3;3; Z5;3; Z7;3; Z9;3g. This subset is easily computed as
follows:
Zprþm;pr
¼ pr þmþ 1

p
Xm

2b c

i¼0

Bprþm;pr ;prþ2iCi;prþi ð38Þ
where m is an integer starting with 0 and increases with step 2 according to the condition pr þm 6 Max. The following pseu-
do-code is employed to compute this subset.
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read pr;
for m = 2 : 2: Max

ifððmþ prÞ <¼ MaxÞ
{
Compute Zpr þ m;pr using Eq. (38);
m = m + 2;

}
endfor

Pseudo-code for computing a subset of Zernike moments of selected repetition pr
4.1.3. Subset Zernike moments of single moment
A single Zernike moment is a subset of the full set of Zernike moments. To compute a specific single Zernike moment Zp1 ;p2

subject to the condition p1 � p2 ¼ even; Eq. (36) is rewritten as follows:
Table 1
The red

Max

5
10
40

100
200
Zp1 ;p2
¼ p1 þ 1

p
Xp1�p2

2b c

i¼0

Bp1 ;p2 ;p1�2iCp1�p2
2 �i;p1�

p1�p2
2 �i ð39Þ
The proposed pseudo-code for computing this subset is written as follows:
read p1;p2;
D ¼ p1 � p2;
if (mod (D,2) == 0) then

Compute Zp1;p2 using Eq. (39);
else

Write "There is no Zernike moments for these integers" ;
endif

Pseudo-code for computing an individual Zernike moment
4.2. Exact computation of complex moments

Complex moments of order (p + q) for image intensity function f(x, y) are defined as:
Cp;q ¼
Z 1

�1

Z 1

�1
ðxþ îyÞpðx� îyÞqf ðx; yÞdxdy; ð40Þ
with î ¼
ffiffiffiffiffiffiffi
�1
p

. By using the binomial theorem, each complex moment can be expressed as a linear combination of geometric
moments of the same order or less as follows:
Cp;q ¼
Xp

k¼0

Xq

j¼0

p

k

� �
q

j

� �
ð�1ÞjikþjGpþq�k�j;kþj ð41Þ
Consequently, exact computation of geometric moments resulting in exact values of complex moments where the geometric
moments of order ðpþ qÞ for image intensity function f ðx; yÞ are defined as:
Gp;q ¼
Z 1ffiffi

2
p

� 1ffiffi
2
p

Z 1ffiffi
2
p

� 1ffiffi
2
p

xpyqf ðx; yÞdxdy ð42Þ
Exact values of geometric moments are computed by adapting our previously published methods [8,9].

4.3. Symmetry property of complex moments

For a moment order equal to Max, the total number of independent complex moments is N1 ¼ ðMaxþ 1ÞðMaxþ 2Þ=2.
Based on the definition of the complex moments in Eq. (40) and the principles of mathematical analysis, we can reduce
approximately fifty percent of the computational complexity of complex moments. We can write the following equation:
uced number of independent complex moments and reduction percentage.

N1 N2 Reduction percentage

21 12 42.8
66 36 45.4

861 441 48.7
5151 2601 49.5

20301 10201 49.75
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Theoret

p

0
1
2
2
3
3
4
4
4
5
5
5
6
6
6
6
7
7
7
7
8
8
8
8
8
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Cp;q ¼ C�q;p ð43Þ
Applying Eq. (43) reduces the number of independent complex moments to N2 ¼ ðN1=2þ bMax=2cÞwhere the reduction per-
cent is ðN1 � N2Þ=N1. Table 1 shows the reduced number of independent complex moments and the reduction percentage.

5. Numerical experiments

This section is devoted to numerical experiments that ensure the validity and efficiency of the proposed method. It is di-
vided into three subsections. In the first subsection, a numerical experiment is conducted by using artificial test image. The
full set of Zernike moments are computed by using the proposed and ZOA methods. The computed moments are compared
with theoretical ones. In the second subsection, reconstruction of real images is considered. MSE and PSNR are commonly
used to assess the performance of image reconstruction techniques. Both MSE and PSNR of the proposed and ZOA methods
are computed and graphically represented. Finally, numerical experiments are performed to evaluate the computational
times. Elapsed CPU times of the proposed method are compared with those corresponding ones of coefficient, modified Kint-
ner, q-recursive and hybrid methods. Based on the extreme computational complexity, the direct method is excluded from
our comparison process.

5.1. Artificial test image

Artificial test image is used to prove the validity of the proposed method. A special image with image intensity function
f ðx; yÞ ¼ 1 for all points (x, y) is considered. The size of this artificial test image is 4 � 4. The input image is mapped to be
inside the unit circle where the coordinate origin coincides with the center of the circle. The mapped image is defined in
the square �1=

ffiffiffi
2
p

;1=
ffiffiffi
2
pj k

� �1=
ffiffiffi
2
p

;1=
ffiffiffi
2
pj k

, where the geometric moments are:
Gpq ¼
1=

ffiffiffi
2
p� �pþ1

� �1=
ffiffiffi
2
p� �pþ1

pþ 1

0B@
1CA 1=

ffiffiffi
2
p� �qþ1

� �1=
ffiffiffi
2
p� �qþ1

qþ 1

0B@
1CA ð44Þ
Eq. (44) could be rewritten as follows:
Gpq ¼
4 1=

ffiffi
2
pð Þpþqþ2

ðpþ1Þðqþ1Þ ; p ¼ even

0; p ¼ odd

8<: ð45Þ
Substituting Eq. (45) into (41) and (30) yields the theoretical values of Zernike moments. Exact values of Zernike moments
are calculated by using Eqs. (35) and (36). The approximated ZOA values are obtained from Eq. (12). It is clear that, the values
ical, exact and approximated ZOA Zernike moments for the artificial test image.

q Theoretical, Zpq Exact, bZpq ZOA, eZpq

0 0.6366 0.6366 0.6366
1 0 0 0
0 �0.6366 �0.6366 �0.7162
2 0 0 0
1 0 0 0
3 0 0 0
0 �0.2122 �0.2122 �0.3233
2 0 0 0
4 �0.2122 �0.2122 0.2114
1 0 0 0
3 0 0 0
5 0 0 0
0 0.2122 0.2122 0.3525
2 0 0 0
4 0.2122 0.2122 0.4026
6 0 0 0
1 0 0 0
3 0 0 0
5 0 0 0
7 0 0 0
0 0.1273 0.1273 0.3642
2 0 0 0
4 0.1273 0.1273 0.1850
6 0 0 0
8 0.1273 0.1273 0.1204



Fig. 4. Gray level images: (a) House, (b) baboon, (c) tank, (d) peppers, (e) F16, (f) Lena.
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obtained from the proposed method and the theoretical values are identical. For quick comparison, all computed values are
shown in Table 2.
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5.2. Image reconstruction

Digital images are reconstructed by using two sets of Zernike moments. The first set is computed by using the proposed
method while the second set is computed by using the conventional approximation method. For an n-bit image of size
N �M, MSE and PSNR are defined as:
Fig. 5. Binary images: (a) fingerprint, (b) recycle logo, (c) Chinese letter.

Fig. 6. (a) MSE, (b) PSNR of the house gray level image of size 128 � 128.



Table 3
Average

Mom

Max
Max
Max
Max
Max
Max
Max
Max
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MSE ¼ 1
NM

XN

i¼1

XM

j¼1

ðf̂ Maxðxi; yjÞ � f ðxi; yjÞÞ
2 ð46Þ

PSNR ¼ 10� log10
ð2n � 1Þ

MSE

� �
ð47Þ
Eq. (46) could be rewritten as follows [20]:
MSE ¼
XMax

p¼0

X
q

p�q¼even
q6p

kp
bZp;q � Zp;q

� �2
þ

X1
p¼Maxþ1

Xp

q
p�q¼even

q6p

kpjZp;qj2 ð48Þ
The first term of Eq. (48) is the discrete approximation error while the second one is the result of using a finite number of
moments. The first error increases as Max increases while the second error decreases as Max increases. The proposed method
removes the first error completely. The reconstructed image will be very close to the original one when the maximum mo-
ment order reaches a certain value. A numerical experiment is performed where the ‘House’ gray level image of size
128 � 128 as in Fig. 4a is used with Max = 40. Fig. 6a shows MSE for both the proposed and the ZOA method. It is clear that
MSE for the proposed method decreases as the moment order increases while it increases as the moment order increases for
the approximated method. Fig. 6b shows PSNR for both methods. PSNR for both methods are relatively equal for low order
moments. As the moment order increases, the PSNR values are strongly deviated where the values of the proposed method
monotonically increase.

5.3. Computational time

Computational time is a very crucial issue. A number of numerical experiments are performed in order to evaluate the
performance of the proposed method. The numerical experiments are performed with a computer machine equipped with
1.8 GHz Pentium IV processor and 512 MB RAM. The executed code is designed by using Matlab7.

As described in Section 2, five methods are discussed. Only three of them are compared with the proposed method. The
selected three methods were proved to be faster than the others [6,30]. Consequently, we compare the proposed method
with the methods of the best performance.
elapsed CPU times in seconds: full set of Zernike moments for gray level images of size 128 � 128.

ent order Coefficient method Kintner method q_recursive Method Hybrid method Proposed Method

= 5 0.4210 0.2340 0.2650 0.2340 0.0150
= 10 2.0130 0.8120 0.9360 0.8110 0.0310
= 15 6.1150 1.7470 1.9970 1.7320 0.0470
= 20 13.7590 3.1580 3.5250 3.0140 0.0940
= 25 25.6150 4.7580 5.3980 4.7420 0.1880
= 30 42.8690 6.8130 7.7850 6.8020 0.3750
= 35 66.0180 9.2405 10.5300 9.2350 0.6720
= 40 100.3473 13.9531 16.0050 13.8525 0.9380

Fig. 7. Elapsed CPU time in seconds. Full set of Zernike moments of gray level images of size 128 � 128.
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The full set of Zernike moments is computed by using coefficient, modified Kintner, hybrid and proposed methods. In the
first experiment, a set of standard gray level images of size 128 � 128 as displayed in Fig. 4, are used. The average CPU
elapsed times for the different aforementioned methods are included in Table 3. It is obvious that CPU elapsed times of mod-
ified Kintner and hybrid methods are very close to each other. Therefore, elapsed times of one of them are enough in the
comparison process. The average CPU elapsed times of coefficient, hybrid and the proposed methods are plotted against
the moment order in Fig. 7. It is clear that, the proposed method has tremendously reduced the execution time.

In the second numerical experiment, the full set of Zernike moments is computed by using the same selected methods. In
this experiment, gray level images of size 200 � 200 are used. The average CPU elapsed times are shown in Table 4. The CPU
elapsed times of coefficient, hybrid and the proposed methods are plotted against the moment order in Fig. 8. It is clear that,
both the coefficient and hybrid methods are time-consuming. On the other side, the proposed method is very fast.

Another numerical experiment is conducted with a set of binary images of size 128 � 128 as displayed in Fig. 5. These
images are selected from different database sets. Based on the results from the previous numerical experiments, average
elapsed CPU times of the selected methods are shown in Table 5. The obtained results clearly show that the performance
of the proposed method is much better than the others.
Table 4
Average elapsed CPU times in seconds: full set of Zernike moments for gray level images of size 200 � 200.

Moment order Coefficient method Kintner method q_recursive method Hybrid method Proposed method

Max = 5 1.0610 0.5460 0.6240 0.5460 0.0310
Max = 10 4.9610 1.9810 2.2470 1.9500 0.0940
Max = 15 15.0700 4.2900 4.8360 4.2430 0.1250
Max = 20 33.8830 7.5190 8.4550 7.4720 0.2190
Max = 25 63.0230 11.6850 13.1040 11.6370 0.3750
Max = 30 106.7190 16.8010 18.7810 16.5670 0.5160
Max = 35 163.9090 22.6820 25.6620 22.4790 0.9690
Max = 40 248.3231 34.4290 38.7492 34.0230 1.2650

Fig. 8. Elapsed CPU time in seconds. Full set of Zernike moments of gray level images of size 200 � 200.

Table 5
Average elapsed CPU times in seconds: full set of Zernike moments for three binary images of size 128 � 128.

Moment order Image of fingerprint Image of recycle logo Image of Chinese letter

Hybrid method Proposed method Hybrid method Proposed method Hybrid method Proposed method

Max = 5 0.641 0.0150 0.4220 0.0110 0.4070 0.0150
Max = 10 2.3590 0.0310 1.1750 0.0160 1.1720 0.0160
Max = 15 3.7660 0.0470 3.3440 0.0400 2.3420 0.0330
Max = 20 5.1250 0.0940 4.8590 0.0780 3.5000 0.0630
Max = 25 6.5780 0.1410 6.6410 0.1103 4.8280 0.1090
Max = 30 8.0000 0.2106 7.9070 0.2018 6.9690 0.2030
Max = 35 9.4220 0.4220 9.3750 0.3170 9.2350 0.2970
Max = 40 10.766 0.6560 10.750 0.5905 10.5203 0.5310



Table 6
Average elapsed CPU times in seconds: full set of Zernike moment by using the proposed method for gray scale images of two different sizes.

Max = 2 Max = 10 Max = 20 Max = 30 Max = 40 Max = 50 Max = 60 Max = 70

N = 256 0.0470 0.0940 0.2030 0.3750 0.6870 1.1720 2.0150 3.2810
N = 512 0.1100 0.3750 0.7500 1.1720 1.7810 2.5000 3.5940 5.0310

Table 7
Average elapsed CPU times in seconds: subsets of selected Zernike moments for gray level images.

Coefficient’s Method Kintner’s Method Hybrid Method Proposed Method

Selected order = 30 2.1400 7.7190 7.3750 0.1870
8.531 59.1410 48.1720 0.2190

Selected repetition = 12 0.6410 7.3290 7.250 0.1720
2.360 47.7970 47.5320 0.2030
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We must note that, both modified Kintner and Hybrid methods require a very large size of memory for computing and
storing the real-valued polynomials Sp;qðx; yÞ. Based on the expensive memory requirements, all of these methods are not
suitable for large images.

Additional numerical experiments are performed for large images with high order moments. In these numerical exper-
iments, gray level images of size 256 � 256 and 512 � 512 are used. The full set of Zernike moments are computed by using
the proposed method. Similar to the previous results, the average elapsed CPU times are shown in Table 6. This ensures the
superiority of the proposed method where this method requires a very small execution time whatever the size of the input
image and the order of the moments are.

Additional numerical experiments are performed in order to compare the elapsed CPU times for computing different sub-
sets of Zernike moments. A subset of selected order equalling 30 is considered. The elapsed CPU times in seconds of the coef-
ficients, modified Kintner, hybrid and the proposed methods are showed in Table 7. This experiment is performed twice,
where a gray level image of size 64 �;64 is used in the first run. The same input image of size 128 � 128 is used in the second
run. It is clear that, the proposed method is very fast method in comparison with the others.

A similar numerical experiment is performed to compute subset Zernike moments of selected repetition equal to 12. The
estimated elapsed CPU times are shown in Table 7. This experiment confirms the superiority of the proposed method.
6. Conclusion

A new method is proposed for efficient computation of full and subsets of Zernike moments where novel formulae are
proposed to achieve the target. Exact Zernike moments are expressed as a linear combination of exact complex moments.
Image reconstruction by using the proposed method shows a great improvement over the conventional methods. The image
reconstruction error of the proposed method monotonically decreases as the moment’s order increases, while the corre-
sponding error of the conventional methods increases as the moment’s order increases. In addition to accuracy advantage
of the proposed method, this method is much faster than the conventional methods. In general, the proposed method is out-
performed over than all the available methods for Zernike moment computations.
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