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Exact Legendre moment computation for gray level images

Khalid M. Hosny∗

Department of Computer Science, Faculty of Computers and Informatics, Zagazig University, Zagazig, Egypt

Received 15 March 2006; received in revised form 14 April 2007; accepted 19 April 2007

Abstract

A novel method is proposed for exact Legendre moment computation for gray level images. A recurrence formula is used to compute exact
values of moments by mathematically integrating the Legendre polynomials over digital image pixels. This method removes the numerical
approximation errors involved in conventional methods. A fast algorithm is proposed to accelerate the moment’s computations. A comparison
with other conventional methods is performed. The obtained results explain the superiority of the proposed method.
� 2007 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Since Hu introduces the moment invariants [1], moments
and moment functions have been widely used in the field of
image processing. Teague [2] introduces the set of orthogo-
nal moments (e.g. Legendre moment and Zernike moment),
where orthogonal moments can be used to represent an image
with the minimum amount of information redundancy [3].
Legendre moments are used in many applications such as pat-
tern recognition [4], face recognition [5], and line fitting [6].
It is well known that, the difficulty in the use of Legendre
moments is due to their high computational complexity, espe-
cially when a higher order of moments is used. There are two
goals: the issue of accuracy and the computational complexity.
Many works have been proposed to improve the accuracy and
efficiency of moment calculations [7–10], but those methods
mainly focus on two-dimensional (2D) geometric moments.
Those methods are relatively efficient, but not accurate
enough, since the computation of Legendre moments is based
on an approximate formula. Liao and Pawlak [11] propose
more accurate approximation formula for computing the 2D
Legendre moments of a digital image when an analog origi-
nal image is digitized. Then they uses an alternative extended
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Simpson’s rule (ASER) to numerically calculate a double inte-
gral function for a higher order of Legendre moments in each
pixel. These orthogonal moments have been successfully used
to reconstruct some Chinese characters. The method proposed
by Liao and Pawlak is relatively accurate, but it needs much
more modification. Recently, Yap and Paramesran [12] propose
an exact method to compute 2D Legendre moments. They
explain that Legendre moments are continuous moments,
hence, when they are applied to discrete-space image, a num-
erical approximation involved and error occurs, where the
error due to approximation generally increases as the order of
the moment increases. Their method is accurate, but it is time
consuming. They achieved one goal and failed in the other.

This paper proposes a novel method for accurate and fast
computation of Legendre moments for both binary and gray
level images. A set of 2D Legendre moments are computed
exactly by using a mathematical integration of Legendre poly-
nomials. Then, a fast algorithm is applied for computation com-
plexity reduction. The idea of this method is similar to that of
Yap and Paramesran [12], but the implementation is completely
different. The proposed method is completely independent of
geometric moments, and easily extended to compute 3D Leg-
endre moments. Experimental studies and the complexity anal-
ysis clearly show the superiority of the proposed method over
the conventional ones.

The rest of the paper is organized as follows: In Section 2, an
overview of Legendre moments is given. The proposed method
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is described in Section 3. Section 4 is devoted to give detailed
analysis of computational complexity and some experimental
results. Conclusion and concluding remarks are presented in
Section 5.

2. Legendre moments

Legendre moments of order (p + q) for an image with in-
tensity function f (x, y) are defined as

Lpq = (2p + 1)(2q + 1)

4

∫ 1

−1

∫ 1

−1
Pp(x)Pq(y)f (x, y) dx dy,

(1)

where Pp(x) is the pth-order Legendre polynomial defined as
[13]

Pp(x) =
p∑

k=0

ak,pxk = 1

2pp!
(

d

dx

)p

[(x2 − 1)p], (2)

where x ∈ [−1, 1], and the Legendre polynomial Pp(x) obeys
the following recursive relation:

Pp+1(x) = (2p + 1)

(p + 1)
xP p(x) − p

(p + 1)
Pp−1(x), (3)

with P0(x) = 1, P1(x) = x and p > 1. The set of Legendre
polynomials {Pp(x)} forms a complete orthogonal basis set on
the interval [−1, 1]. The orthogonality property is defined as

∫ 1

−1
Pp(x)Pq(x) dx =

⎧⎨
⎩

0, p �= q,

2

(2p + 1)
, p = q.

(4)

A digital image of size M ×N is an array of pixels. Centers of
these pixels are the points (xi, yj ), where the image intensity
function is defined only for this discrete set of points (xi, yj ) ∈
[−1, 1]×[−1, 1]. �xi =xi+1−xi , �yj =yj+1−yj are sampling
intervals in the x- and y-directions, respectively. In the literature
of digital image processing, the intervals �xi and �yj are fixed
at constant values �xi = 2/M , and �yj = 2/N , respectively.
Therefore, the points (xi, yj ) will be defined as follows:

xi = −1 + (i − 1
2 )�x, (5.1)

yj = −1 + (j − 1
2 )�y, (5.2)

with i=1, 2, 3, . . . , M and j =1, 2, 3, . . . , N . For the discrete-
space version of the image, Eq. (1) is usually approximated by

L̃pq = (2p + 1)(2q + 1)

MN

M∑
i=1

N∑
j=1

Pp(xi)Pq(yj )f (xi, yj ). (6)

Eq. (6) is so-called direct method for Legendre moments com-
putations, which is the approximated version using zeroth-order
approximation (ZOA). As indicated by Liao and Pawlak [11],
Eq. (6) is not a very accurate approximation of Eq. (1). To
improve the accuracy, they propose to use the following
approximated form:

Lpq = (2p + 1)(2q + 1)

4

M∑
i=1

N∑
j=1

hpq(xi, yj )f (xi, yj ), (7)

where

hpq(xi, yj ) =
∫ xi+(�xi/2)

xi−(�xi/2)

∫ yj +(�yj /2)

yj −(�yj /2)

× Pp(xi)Pq(yj ) dx dy. (8)

Liao and Pawlak propose (AESR) method to evaluate the dou-
ble integral defined by Eq. (8), and then they use it to calculate
the Legendre moments defined by Eq. (7).

2.1. Image reconstruction using Legendre moments

Liao and Pawlak [11] shows that the reconstruction from
orthogonal moments only adds the individual components of
each order to generate the reconstructed image. Since, Legen-
dre polynomial {Pp(x)} forms a complete orthogonal basis set
on the interval [−1, 1] and obeys the orthogonal property. The
image function f (x, y) can be written as an infinite series
expansion in terms of the Legendre polynomials over the square
[−1, 1] × [−1, 1]:

f (x, y) =
∞∑

p=0

∞∑
q=0

LpqPp(x)Pq(y), (9)

where the Legendre moments Lpq are computed over the same
square. If only Legendre moments of order smaller than or
equal to Max are given, then the function f (x, y) in Eq. (9)
can be approximated as follows:

f̂Max(x, y) =
Max∑
p=0

p∑
q=0

Lp−q,qPp−q(x)Pq(y), (10)

where the number of moments used in this form for image
reconstruction is defined by

Ntotal = (Max + 1)(Max + 2)

2
. (11)

3. The proposed method

The approximation of the integral terms in Eq. (8) is res-
ponsible for the approximation error of Legendre moments
[12]. These integrals need to be evaluated exactly to remove
the approximation error of Legendre moments computation. To
achieve this, a new accurate and fast method will be showed
for exact Legendre moments computation.

3.1. Exact computation of Legendre moments

One of the special results involving Legendre polynomial is
that,∫

Pp(x) dx = Pp+1(x) − Pp−1(x)

2p + 1
, (12)

where p�1. For simplicity, upper and lower limits of the
integration in Eq. (8) will be expressed as follows:

Ui+1 = xi + �xi

2
= −1 + i�x, (13.1)
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Ui = xi − �xi

2
= −1 + (i − 1)�x, (13.2)

similarly,

Vj+1 = yj + �yj

2
= −1 + j�y, (14.1)

Vj = yj − �yj

2
= −1 + (j − 1)�y. (14.2)

Using Eqs. (7), (8), and (12), the integral parts will be written
as follows:
∫ Ui+1

Ui

Pp(x) dx =
[
Pp+1(x) − Pp−1(x)

2p + 1

]Ui+1

Ui

, (15.1)

∫ Vj+1

Vj

Pq(y) dy =
[
Pq+1(y) − Pq−1(y)

2q + 1

]Vj+1

Vj

. (15.2)

Substitute Pp+1(x) from Eq. (3) into (15.1), (15.2), yields
Eqs. (16.1) and (16.2),
∫ Ui+1

Ui

Pp(x) dx = 1

(p + 1)
[xP p(x) − Pp−1(x)]Ui+1

Ui
, (16.1)

∫ Vj+1

Vj

Pq(y) dy = 1

(q + 1)
[yP q(y) − Pq−1(y)]Vj+1

Vj
. (16.2)

The set of Legendre moment can thus be computed exactly by

L̂pq =
M∑
i=1

N∑
j=1

Ip(xi)Iq(yj )f (xi, yj ), (17)

where

Ip(xi) = (2p + 1)

(2p + 2)
[xP p(x) − Pp−1(x)]Ui+1

Ui
, (18.1)

Iq(yj ) = (2q + 1)

(2q + 2)
[yP q(y) − Pq−1(y)]Vj+1

Vj
. (18.2)

Eq. (17) is valid only for p�1, and q �1.
Special cases:

(i) First row

p = 0; q = 0, 1, 2, 3, . . . , Max:

L̂0q = 1

M

M∑
i=1

N∑
j=1

Iq(yj )f (xi, yj ). (19.1)

(ii) First column

q = 0; p = 0, 1, 2, 3, . . . , Max:

L̂p0 = 1

N

M∑
i=1

N∑
j=1

Ip(xi)f (xi, yj ). (19.2)

The moment kernel of exact 2D Legendre moments is defined
by Eq. (17). This kernel is independent of the image. Therefore,

this kernel can be pre-computed, stored, recalled whenever it
is needed to avoid repetitive computation.

3.2. Moment kernel generation

Eqs. (18.1) and (18.2) will be rewritten as follows:

Ip(xi) = (2p + 1)

(2p + 2)
(Ui+1Pp(Ui+1) − Pp−1(Ui+1)

− UiPp(Ui) + Pp−1(Ui)), (20.1)

Iq(yj ) = (2q + 1)

(2q + 2)
(Vj+1Pq(Vj+1) − Pq−1(Vj+1)

− VjPq(Vj ) + Pq−1(Vj )). (20.2)

Eqs. (13) and (14) are used to generate the columns U and
V, respectively. The recurrence relation (3) is used to generate
Legendre polynomial Pp(xi). In order to generate Pp(Ui+1),
Ui+1 is used instead of xi . The circulation property of Ui+1 and
Ui is implemented to avoid the duplication of kernel generation
time. The polynomial Pp(Ui) will be generated from Pp(Ui+1)

using the following algorithm:

for i = 1 to N
g3(i, 0) = 1.0

endfor
for k = 1 to Max

g3(1, k) = (−1.0)∧k∗g2(N, k)

for i = 2 to N
g3(i, k) = g2(i − 1, k)

endfor
endfor
where g2, g3 are matrix representations of Pp(Ui+1) and
Pp(Ui), respectively, N is the image size, and Max is the
maximum moment order.

3.3. Fast algorithm

Computation of exact Legendre moments using Eq. (17) is
similar to the direct method, which is very time consuming.
Similar to the method of Fourier transform, the principle adv-
antage of separability property is that: the 2D (p + q)-order
Legendre moment can be obtained in two steps by successive
computation of the 1D qth order moment for each row. A fast
method for exact Legendre moments computation will be pre-
sented. Eq. (17) will be rewritten in a separable form as follows:

L̂pq =
M∑
i=1

Ip(xi)Yiq , (21)

where

Yiq =
N∑

j=1

Iq(yj )f (xi, yj ). (22)

Yiq in Eq. (22) is the qth order moment of row i. Since,

I0(xi) = 1/M , (23)
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substitutes Eq. (23) into Eq. (21), yields:

L̂0q = 1

M

M∑
i=1

Yiq . (24)

4. Computational complexity and experimental results

In this section, the validity proof of the proposed method
will be presented. The performance for the proposed method is
evaluated and compared with the other methods. This section is
divided into three subsections. The first subsection is devoted
to prove the validity of the proposed method where the com-
puted values are compared with theoretical ones. As in Ref.
[12], the images used are artificially generated and are delib-
erately made relatively small in size so that hand calculations
can be employed to obtain the theoretical values. In the second
subsection, the image reconstruction aspect for real and ran-
domly generated images is considered. In the third subsection,
a complexity analysis, the computation times of the proposed
method and the method of Yap and Paramesran [12] are com-
pared. The computation time of generating kernels as well as
Legendre moment computation will be considered.

4.1. Artificial images

4.1.1. First image
As mentioned above, artificial images are used to prove va-

lidity of the proposed methods. A special image whose function
f (x, y) has the same constant value 1 for all points (x,y) is con-
sidered. In such case, theoretical values of Legendre moments
will be calculated by the following equation:

Lpq = (2p + 1)(2q + 1)

4

∫ 1

−1

∫ 1

−1
Pp(x)Pq(y) dx dy. (25)

Using Eq. (4) with Eq. (25) yields:

Lpq =
{

1, p = q = 0,

0 otherwise.
(26)

It is clear that, Legendre moments that are computed with
Eqs. (17), (19.1), (19.2) are equal to zero. The only non-zero
value is obtained from Eq. (19.1) for p = q = 0. These exact
values are identical to the theoretical ones. The theoretical val-
ues of Legendre moments (Lpq , Eq. (26)), exact values (L̂pq ,
Eqs. (17)–(19)),

Table 1
Comparison of theoretical, Lpq , exact, L̂pq , and ZOA, L̃pq for f (xi , yj ) = 1

n Theoretical, Lpq Exact, L̂pq ZOA, L̃pq

Max Max Max

0 1 2 3 0 1 2 3 0 1 2 3

0 1 0 0 0 1 0 0 0 1.0000 0.0000 −0.1563 0.0000
1 0 0 0 0 0 0 0 0 0.0000 0.0000 0.0000 0.0000
2 0 0 0 0 0 0 0 0 −0.1563 0.0000 0.0244 0.0000
3 0 0 0 0 0 0 0 0 0.0000 0.0000 0.0000 0.0000

and the ZOA approximated values (L̃pq , Eq. (7)) are shown in
Table 1.

4.1.2. Second image
Consider an artificial image f (xi, yj ), which is represented

by the matrix A = [3, 2, 1, 5; 6, 1, 7, 3; 2, 8, 4, 6; 5, 1, 4, 2].
Legendre moments for this image are shown in Table 2. It
is obvious that the exact values (L̂pq , Eqs. (17)–(19)) match
the theoretical values (Lpq , Eq. (1)) while that of ZOA (L̃pq ,
Eq. (7)) deviates from the theoretical values especially when
the order increases.

4.2. Image reconstruction

In this section, rating the performance of the reconstructed
images using approximated and exact Legendre moments will
be performed using error analysis and some criteria commonly
used for measuring image quality. These criteria are mean-
square error (MSE) and peak signal-to-noise ratio (PSNR).

MSE is used as a measure of reconstruction error. For
an n-bit image of size M×N pixels, MSE and PSNR are
defined as

MSE = 1

MN

M∑
i=1

N∑
j=1

(f̂Max(xi, yj ) − f (xi, yj ))
2, (27)

PSNR = 10 × log10

(
(2n − 1)

MSE

)
. (28)

Eq. (27) can be rewritten as follows [11]:

MSE =
Max∑
p=0

p∑
q=0

(L̂p−q,q − Lp−q,q)2

+
∞∑

p=Max+1

p∑
q=0

4

(2p − 2q + 1)(2q + 1)
L̂p−q,q . (29)

The first term of Eq. (29) is the discrete approximation error,
while the second one is the result of using a finite number of
moments. The first error increases as Max tends to infinity.
On the other hand, the second error decreases as Max tends to
infinity.

The proposed method completely removes the first error. The
second error is a common error in all methods that are used to
compute continuous orthogonal moments. The reconstructed
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Table 2
Comparison of theoretical, Lpq , exact, L̂pq , and ZOA, L̃pq for f (xi , yj )=A

n Max

0 1 2 3

Theoretical, Lpq

0 3.7500 0.1875 0.4688 −0.5195
1 0.2813 −0.7734 −1.2305 −0.3179
2 −1.6406 −0.5273 2.1973 −0.0769
3 −0.3691 −1.2407 1.1023 −3.2016

Exact, L̂pq

0 3.7500 0.1875 0.4688 −0.5195
1 0.2813 −0.7734 −1.2305 −0.3179
2 −1.6406 −0.5273 2.1973 −0.0769
3 −0.3691 −1.2407 1.1023 −3.2016

ZOA, L̃pq

0 3.7500 0.1875 −0.1172 −0.5879
1 0.2813 −0.7734 −1.2744 −0.0359
2 −2.2266 −0.5566 2.4719 0.2072
3 −0.4717 −0.9587 1.6246 −2.7361

image will be very close to the original one when the maximum
moment order reaches a certain value.

A randomly image f (xi, yj ) is generated using MatLab7 as
follows:

f (xi, yj ) = rand(M, N), 0�f (xi, yj )�1 ∀i, j . (30)

Both the proposed and the approximated methods are used
to reconstruct the random image defined by Eq. (30). Image
dimensions are selected to be M = N = 64, and the maxi-
mum moment order ranging from 10 to 60. Fig. 1(a) shows
MSE for both the proposed method (Exact) and the approxi-
mated method (ZOA). It is clear that, MSE for the exact method
decreases as the moment order increases, while, it increases
as the moment order increases for the approximated method.
This result clearly shows the efficiency of the proposed method.
Fig. 1(b) shows PSNR for both methods. PSNR for both meth-
ods are relatively equal for low order moments. As moment
order increases the PSNR values are strongly deviated, where
the values of the exact method monotonically increases. On the
other hand, the values of the approximated method monotoni-
cally decrease.

Fig. 2(b) and (c) shows the curves of MSE and PSNR of the
real gray level image in Fig. 2(a). The first figure shows that,
the estimated MSE of the proposed method tends to zero as the
moment order increase, while second shows the big difference
between the PSNR of the proposed method and the approx-
imated one. The same conclusion is obtained from Fig. 3. It
is clear that, the obtained results confirm the accuracy of the
proposed method.

4.3. Computation time

Any set of parameters obtained by projecting an image onto
a 2D polynomial basis are called moments. Therefore, compu-
tation of Legendre moments basically consists of two stages. In
the first stage, the moment kernels are generated, while in the
second stage the moment kernels are multiplied with the image

Fig. 1. Random generated image of size 64 × 64: (a) MSE and (b) PSNR.

function and resulted in the set of Legendre moments. Moment
kernels are independent of images; therefore, they can be com-
puted in advance, stored and retrieved whenever necessary. The
computation time for the first stage is much less important than
that of the second stage. Consequently, we concentrate on the
reduction of the moment commutation time by minimization
of the total addition and multiplication operations.

Computation time of the moment kernels for exact method
of Yap and Paramesran [12], and the proposed method will
be presented. For 1000 polynomial points, Table 3 shows the
computation time of the kernels for different values of moment
order. It is clear that, the time required by the proposed method
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Fig. 2. Real image of size 128 × 128: (a) peppers original image, (b) MSE, and (c) PSNR.

to generate the moment kernel is very small compared to that
time of Yap and Paramesran [12] especially for higher order
moments.

For a digital gray level image of size N × N , and Max is
moment order, Yap and Paramesran [12], reported that, the total
number of operations required by their method and the ZOA
one for Legendre moment’s computation are identical. Yang
et al. [10] reported that, the ZOA required (Max + 1)2N2/2
additions and (Max+1)2N2 multiplications. Based on Eq. (8),
(Max+1)(Max+2)/2 is used instead of (Max+1)2, therefore,
the numbers of operations are

(Max + 1)(Max + 2)

2
N2 additions, (31.1)

(Max + 1)(Max + 2)N2 multiplications. (31.2)

The computational complexity for the proposed method will
be discussed in detail. Legendre moment’s computation using
the proposed method consists of two main steps. Each step will
be discussed individually; then the whole computational com-
plexity will be evaluated easily. Step 1, the creation of the ma-
trix Yiq requires N(N−1)(Max+1) additions and N2(Max+1)

multiplications. The matrix of Legendre moments is an upper
triangle square matrix of dimensions (Max+1). The total num-
ber of Legendre moments is Ntotal = (Max + 1)(Max + 2)/2.
The computation of the Legendre moment matrix is divided to
three steps namely; the first row, the first column and the rest
of the moments.
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Fig. 3. Real image of size 128 × 128: (a) baboon original image, (b) MSE, and (c) PSNR.

Table 3
Comparison between kernels’s generating times (in seconds)

Moment order Yap and Paramesran [12] Proposed method

10 0.0630 0.0470
20 0.2190 0.0940
30 0.4680 0.1250
40 0.7970 0.1870
50 1.2500 0.2350

100 4.9840 0.4850

According to Eq. (19.1), the computation of the first row
needs only the addition process of the elements of Yiq . This
process requires (N − 1)(Max + 1), where (Max + 1) refers to

the number of elements. Similarly, by using Eq. (19.2) the com-
putation of the first column requires Max(N − 1) addition pro-
cess, where Max refers to the number of elements. The rest of
the non-zero matrix elements is Max(Max − 1)/2. The com-
putation of these moments requires Max(Max − 1)(N − 1)/2
additions and Max(Max − 1)N/2 multiplications. So comput-
ing all the required exact Legendre moments needs

(Max + 1)(N − 1)

2
(2N + Max + 2) additions, (32.1)

N Max

2
(2N + Max − 1) + N2 multiplications. (32.2)
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Table 4
Computational complexity of Yap’s exact method and the proposed method

Yap [12] Proposed method

No. of + No. of ∗ No. of + No. of ∗
Max = 30, N = 64 2 031 616 4 063 232 156 240 154 816
Max = 40, N = 128 14 106 624 28 213 248 757 843 771 584
Max = 40, N = 512 255 705 984 451 411 968 11 166 883 11 147 264
Max = 50, N = 512 347 602 944 695 205 888 14 020 818 13 996 544
Max = 60, N = 512 495 714 304 991 428 608 16 925 853 16 897 024

Table 5
CPU elapsed time of Yap’s exact method and the proposed method (in seconds)

ZOA Yap [12] Proposed method

Time (s) Time (s) Time (s)

Max = 30, N = 64 0.2350 0.2970 0.0470
Max = 40, N = 128 1.2660 1.5000 0.1100
Max = 40, N = 512 55.0000 55.7340 1.6250
Max = 50, N = 512 84.4530 86.2350 1.8130
Max = 60, N = 512 127.7030 129.8430 2.3910

The total number of additions and multiplications req-
uired by Yap’s method [12], and the proposed are compared.
Table 4 shows the number of arithmetic operations for some val-
ues of N , and Max. It is clear that, the proposed method tremen-
dously reduced the total number of arithmetic operations.
Consequently, the CPU time required to compute Legendre
moments is reduced tremendously.

The CPU elapsed times (the program is coded in Matlab7,
and implemented on P4 1.8 GHz with 512 MB RAM) for the
ZOA, Yap’s method and the proposed method are showed in
Table 5.

Despite of, ZOA and exact method of Yap and Paramesran,
required the same total number of arithmetic operations, the
CPU elapsed time of the latest is higher than the first. This is
according to the higher time required to generate the moment
kernel.

Since the moment kernel is pre-computed and stored and for
fair comparison, we performed the experiment for moment’s
computation only. A baboon gray level image of size 512×512
is used in this experiment. The obtained results are plotted in
Fig. 4. Based on this comparison, it is easy to say that the pro-
posed method for 2D Legendre moment computation is exact
and fast method.

To confirm the superiority of the proposed method, a quick
comparison with the result of the recent method of Yang and
his co-authors [10] will be presented. Yang and his colleagues
propose an approximated method to compute 2D Legendre
moment for gray level images. Their method reduces the
number of multiplication operations. On the other hand,
unfortunately, tremendously increased the number of addition
operations. To compute 2D Legendre moment for a gray level
image of size equal N = 512, and the order of moment is
Max=50,Yang’s method [10] requires 2 643 333 multiplication

Fig. 4. CPU elapsed time (in seconds).

operations, and 666 026 666 addition operations. This compar-
ison ensures the superiority of our method.

5. Conclusion

This paper proposes a new exact and fast method for com-
puting 2D Legendre moments for gray level images. The
Legendre moment values calculated by using the approximated
method are deviated from those theoretical values. The error
steadily increases as the moment order increases. On the other
hand, Legendre moments calculated using proposed method are
identical to those obtained by theoretical calculations. Image
reconstruction using the proposed method shows improvement
over that of the approximated method, where the reconstruction
error increases as the moment order increases. The com-
putation time of the proposed method is extremely smaller
than that of the approximated method. The proposed method
is extended easily to calculate 3D Legendre moments. It is
obvious that, the proposed method is outperformed over than
all available methods for Legendre moment computations.
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