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Abstract

Geometric moments are widely used in image processing and pattern recognition. While several methods have been pro-
posed, exact geometric moment’s computation for gray level images is still unavailable. In this paper exact values of geo-
metric moments are calculated using mathematical integration of the monomial terms over digital image pixels. This
method removed the numerical approximation errors involved in conventional methods. A fast algorithm is proposed
to accelerate the moment’s computations. The method is extended to compute the three-dimensional moments. A compar-
ison with other conventional methods is performed. The obtained results explained the superiority of the proposed
method.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Since Hu introduced the moment invariants [1], geometric moments have been widely used in image pro-
cessing and pattern recognition. Some applications where geometric moments used are: aircraft identification,
scene matching, shape analysis, image normalization, character recognition, accurate position detection, color
texture recognition, image retrieval and various other image processing tasks. For an overview of the subject
see [2].

There are several approaches to calculate geometric moments. The conventional direct method which
depends on using zeros-order approximation is time consuming and produces a significant error. Zakaria
et al. [3], Dai et al. [4], Li [5], and Flusser [6] proposed various approaches based on the decomposition of
the object into rows or row segments. Another group of methods is based on Green’s theorem, which evaluates
the double integral over the object by means of single integration along the object boundary [2]. Liao and Paw-
lak [7] proposed a more accurate approximation formula for computing the 2D geometric moments of a dig-
ital image when an analog original image was digitized. Then they used an alternative extended Simpson’s rule
to numerically calculate a double integral function for a higher order of geometric moments in each pixel.
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Spiliotis and Mertzios [8] proposed a novel method which employs binary image representation by non-
overlapping rectangular homogeneous blocks. An image moment is then calculated as a sum of moments
of all blocks. Flusser [9] refined this method. Sossa et al. [10] proposed a new algorithm based on a morpho-
logic decomposition of the binary image into a set of closed disks. Sossa and Flusser [11] refined the original
work. Recently, Chung and Chen [12] extended the algorithm of Spiliotis and Mertzios [8] to approximately
compute the lower order moments for a gray level image using the block representation.

This paper proposes a new method for accurate and efficient computation of geometric Moments for both
binary and gray level images. A set of two-dimensional geometric moments are computed exactly by using a
mathematical integration of the nominal polynomials, then, a fast algorithm is applied for computational com-
plexity reduction. The proposed method is extended to compute 3D geometric moments. Experimental studies
and the complexity analysis clearly show the superiority of this proposed method over the conventional ones.

The rest of the paper is organized as follows: In Section 2, an overview of geometric moments is given. The
proposed method is described in Section 3. Section 4 aims to give a comparison between the computational
time and some experimental results. Conclusion and concluding remarks are presented in Section 5.
2. Geometric moments

Two-dimensional geometric moments have the form of the projection of the image function f ðx; yÞ onto the
nominal xpyq. The ðp þ qÞ order geometric moments Mpq are defined as:
Mpq ¼
Z 1

�1

Z 1

�1

xpyqf ðx; yÞdxdy: ð1Þ
A digital image of size M · N is an array of pixels. Centers of these pixels are the points ðxi; yjÞ, where the
image intensity function is defined only for this discrete set of points ðxi; yjÞ 2 ½�1; 1� � ½�1; 1�.
Dxi ¼ xiþ1 � xi, Dyj ¼ yjþ1 � yj are sampling intervals in the x- and y-directions, respectively. In the literature
of digital image processing, the intervals Dxi and Dyj are fixed at constant values Dxi ¼ 2=M , and Dyj ¼ 2=N
respectively. Therefore, the set of points ðxi; yjÞ will be defined as follows:
xi ¼ �1þ i� 1

2

� �
Dx; ð2:1Þ

yj ¼ �1þ j� 1

2

� �
Dy; ð2:2Þ
with i ¼ 1; 2; 3; . . . ;M , and j ¼ 1; 2; 3; . . . ;N . For the discrete-space version of the image, Eq. (1) is usually
approximated as:
~Mpq ¼
XM

i¼1

XN

j¼1

xp
i yq

j f ðxi; yjÞDxDy: ð3Þ
Eq. (3) is so-called direct method for geometric moment’s computations, which is the approximated version
using zeroth-order approximation (ZOA). As indicated by Liao and Pawlak [7], Eq. (3) is not a very accurate
approximation of Eq. (1). To improve the accuracy, they proposed to use the approximated form:
Mpq ¼
XM

i¼1

XN

j¼1

hpqðxi; yjÞf ðxi; yjÞ; ð4Þ
where
hpqðxi; yjÞ ¼
Z xiþ

Dxi
2

xi�
Dxi

2

Z yjþ
Dyj

2

yj�
Dyj

2

xpyq dxdy: ð5Þ
Liao and Pawlak proposed an alternative extended Simpson’s rule to evaluate the double integral defined by
Eq. (5), then used to calculate the geometric moments defined by Eq. (4).
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3. The proposed method

The approximation of the integral terms in Eq. (5) is responsible for the approximation error of geometric
moments. These integrals need to be evaluated exactly to remove the approximation error. To achieve this, a
new accurate and fast method will be discussed for exact geometric moment’s computation.

3.1. Exact computation of geometric moments

Eq. (5) can be written as following:
hpqðxi; yjÞ ¼ IpðiÞIqðjÞ; ð6Þ

where
IpðiÞ ¼
Z xiþ

Dxi
2

xi�
Dxi

2

xp dx ¼ 1

p þ 1
½Upþ1

iþ1 � U pþ1
i �; ð7:1Þ

IqðjÞ ¼
Z yjþ

Dyj
2

yj�
Dyj

2

yq dy ¼ 1

qþ 1
½V qþ1

jþ1 � V qþ1
j �: ð7:2Þ
The upper and lower limits of the integration in Eq. (7) have the values:
U iþ1 ¼ xi þ
Dxi

2
¼ �1þ iDxi; ð8:1Þ

U i ¼ xi �
Dxi

2
¼ �1þ ði� 1ÞDxi: ð8:2Þ
Similarly,
V jþ1 ¼ yj þ
Dyj

2
¼ �1þ jDyj; ð9:1Þ

V j ¼ yj �
Dyj

2
¼ �1þ ðj� 1ÞDyj: ð9:2Þ
Substituting Eqs. (7.1) and (7.2) into (5), the set of geometric moments can thus be computed exactly by:
M̂pq ¼
XM

i¼1

XN

j¼1

IpðiÞIqðjÞf ðxi; yjÞ: ð10Þ
The moment kernel of exact 2D geometric moments is defined by Eq. (7). This kernel is independent of image.
Therefore, this kernel can be pre-computed, stored, recalled whenever it is needed to avoid repetitive
computation.

3.2. Fast algorithm

Computation of exact geometric moments using Eq. (10) is similar to the direct method, which is very time
consuming. Similar to the method of Fourier transform, the principle advantage of separability property is
that: the 2D ðp þ qÞ-order geometric moment can be obtained in two steps by successive computation of
the 1D qth order moments for each row. A fast method for exact geometric moment’s computation will be
proposed. Eq. (10) will be rewritten in a separable form as follows:
M̂pq ¼
XM

i¼1

IpðiÞY iq; ð11Þ
where
Y iq ¼
XN

j¼1

IqðjÞf ðxi; yjÞ: ð12Þ
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Yiq in Eq. (12) is the qth order moment of row i. Since,
I0ðiÞ ¼ 2=M : ð13Þ

Substitute Eq. (13) into Eq. (7), yields;
M̂0q ¼
2

M

XM

i¼1

Y iq: ð14Þ
3.3. Three-dimensional geometric moments

The proposed method is extended easily to cover the 3D case, where the 3D geometric moments are defined
as:
Mpqr ¼
Z 1

�1

Z 1

�1

Z 1

�1
xpyqzrf ðx; y; zÞdxdy dz: ð15Þ
A 3D digital image or shape of size M · N · K is a multidimensional array of voxels. Centers of these pixels
are the points ðxi; yj; z‘Þ, where the image intensity function is defined only for this discrete set of points
ðxi; yj; z‘Þ 2 ½x1; x2� � ½y1; y2� � ½z1; z2�; where Dxi ¼ xiþ1 � xi,Dyj ¼ yjþ1 � yj, Dz‘ ¼ z‘þ1 � z‘ are sampling inter-
vals in the x-, y- and z-direction respectively. In the literature of digital image processing, the intervals Dxi,
Dyj and Dz‘ are fixed at constant values Dxi ¼ ðx2 � x1Þ=M , Dyj ¼ ðy2 � y1Þ=N and Dz‘ ¼ ðz2 � z1Þ=K respec-
tively. The set of the 3D geometric moments computed exactly by:
M̂pqr ¼
XM

i¼1

XN

j¼1

XK

‘¼1

IpðiÞIqðjÞI rð‘Þf ðxi; yj; z‘Þ; ð16Þ
where IpðiÞ, IqðjÞ are defined by Eq. (7), while I rð‘Þ is defined as:
Irð‘Þ ¼
Z z‘þ

Dz‘
2

z‘�
Dz‘

2

zrdz ¼ 1

r þ 1
½W rþ1

‘þ1 � W rþ1
‘ �: ð17Þ
The fast algorithm for exact 3D geometric moments (Eq. (16)) is summarized as follows:
M̂pqr ¼
XK

‘¼1

Irð‘ÞL‘: ð18Þ
L‘ in Eq. (18) represents the 2D geometric moments for the plate of order ‘.

4. Experimental results

In this section, the validity proof of the proposed method will be presented, where the computed values are
compared with theoretical ones. The theoretical values are computed for relatively small artificial images so
that hand calculations can be employed. The performance for the proposed method is evaluated and com-
pared with the ZOA method. Finally, a comparison between the computation times of the proposed and
the direct method is presented.

4.1. First image

As mentioned above, artificial images are used to prove validity of the proposed methods. A special image
whose function f ðx; yÞ has the same constant value 1 for all ðx; yÞ is considered. In such a case, theoretical geo-
metric moment’s values of this image are calculated by the following equation:
Mpq ¼
Z 1

�1

Z 1

�1

xpyq dxdy ¼ ð1Þpþ1 � ð�1Þpþ1

p þ 1

 !
ð1Þqþ1 � ð�1Þqþ1

qþ 1

 !
: ð19Þ



Table 1
Comparison between moment values of the first image f ðx; yÞ ¼ 1

Theoretical, Mpq

4.0000 0 1.3333 0 0.8000 0
0 0 0 0 0 0
1.3333 0 0.4444 0 0.2667 0
0 0 0 0 0 0
0.8000 0 0.2667 0 0.1600 0
0 0 0 0 0 0

ZOA, ~Mpq

4.0000 0 1.2500 0 0.6406 0
0 0 0 0 0 0
1.2500 0 0.3906 0 0.2002 0
0 0 0 0 0 0
0.6406 0 0.2002 0 0.1026 0
0 0 0 0 0 0

Exact, M̂pq

4.0000 0 1.3333 0 0.8000 0
0 0 0 0 0 0
1.3333 0 0.4444 0 0.2667 0
0 0 0 0 0 0
0.8000 0 0.2667 0 0.1600 0
0 0 0 0 0 0
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The results are shown in Table 1. It is obvious that the exact values (M̂pq, (7)–(9)) match the theoretical values
(Mpq, (19)) while that of ZOA ( ~Mpq, (3)) deviates from the theoretical values.

4.2. Second image

Consider the artificial image f ðxi; yjÞ. The image is represented by the matrix
A ¼ ½3; 2; 1; 5; 6; 1; 7; 3; 2; 8; 4; 6; 5; 1; 4; 2�. Theoretical values for digital gray level images can be calculated
using the following form:
Mpq ¼
XM

i¼1

XN

j¼1

f ðxi; yjÞ �
xi þ Dxi

2

� �pþ1 � xi � Dxi
2

� �pþ1

p þ 1

 !
yj þ

Dyj

2

� �qþ1

� yj �
Dyj

2

� �qþ1

qþ 1

0
B@

1
CA: ð20Þ
The results are shown in Table 2. As shown in the previous test case, exact values (M̂pq, (7)–(9)) match the
theoretical values (Mpq, (20)) while that of ZOA ( ~Mpq, (3)) deviates from the theoretical values especially when
the order increases. These results ensure the validity of proposed method.

4.3. Error analysis

To analyze the computational errors a comparison between the obtained results will be performed. To
make such comparison we will construct a 1D array of moments from the computed 2D array. The following
algorithm is designed to perform the conversion process:

for p ¼ 0 to Max
for q ¼ p to 0

k ¼ 0:5 � ðpþ 1Þ � ðpþ 2Þ � q� 1;
IðkÞ ¼Mðq; p� qÞ;

endfor

endfor



Table 2
Comparison between moment values of the second artificial image

Theoretical, Mpq

15.0000 0.2500 5.2500 0.0313 3.1875 0.0052
0.3750 �0.3438 �0.0938 �0.2305 �0.0891 �0.1634
4.1250 �0.0104 1.6146 �0.0482 1.0047 �0.0393
0.1406 �0.3008 �0.0508 �0.2368 �0.0451 �0.1723
2.3438 �0.0203 0.9484 �0.0377 0.5941 �0.0297
0.0859 �0.2220 �0.0345 �0.1781 �0.0302 �0.1300

ZOA, ~Mpq

15.0000 0.2500 4.9375 0.0156 2.5586 0.0010
0.3750 �0.3438 �0.1016 �0.2090 �0.0767 �0.1185
3.8125 �0.0156 1.4258 �0.0479 0.7571 �0.0294
0.1172 �0.2793 �0.0474 �0.2050 �0.0337 �0.1183
1.8555 �0.0186 0.7175 �0.0305 0.3832 �0.0184
0.0601 �0.1625 �0.0260 �0.1208 �0.0184 �0.0698

Exact, M̂pq

15.0000 0.2500 5.2500 0.0313 3.1875 0.0052
0.3750 �0.3438 �0.0938 �0.2305 �0.0891 �0.1634
4.1250 �0.0104 1.6146 �0.0482 1.0047 �0.0393
0.1406 �0.3008 �0.0508 �0.2368 �0.0451 �0.1723
2.3438 �0.0203 0.9484 �0.0377 0.5941 �0.0297
0.0859 �0.2220 �0.0345 �0.1781 �0.0302 �0.1300

Table 3
The conversion of a 2D array to a 1D vector

p q k

0 0 0
1 1 1
1 0 2
2 2 3
2 1 4
2 0 5
3 3 6
3 2 7
3 1 8
3 0 9
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Table 3 shows the conversion process, where I refers to the 1D array and M to the 2D array. Max is the max-
imum order of moments ðp þ qÞ. For each element of the vector I, we compute the relative error:
Relative Error ¼ Theoretical Value� Calculated Value

Theoretical Value

����
����: ð21Þ
For the first test image, we plot the relative errors of the proposed method and the direct ZOA method for
each element of the moment vector in Fig. 1. Similarly, Fig. 2 presents a comparison of relative errors of
the second test image. It is clear that, the ZOA relative error increases as the order of the moment increase
while the relative error of the proposed method equal zero for all moments.

4.4. Computational time

The computation time is a crucial issue. The CPU time required to compute geometric moments by using
three different methods will be compared. These methods are ZOA represented by Eq. (3), the direct exact
method represented by Eq. (19) and the proposed method represented by the set of Eqs. (11)–(14). The



Fig. 1. Relative errors of the first test image.

Fig. 2. Relative errors of the second test image.
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CPU elapsed times of geometric moment computation for a digital gray scale image of size 512 · 512 (image of
baboon) are displayed in Table 4. All computations are performed using Matlab7 on a 1.8 P4 processor with
RAM 512 MB.

According to the big different scale of the CPU elapsed time required by the three different methods, Fig. 3
shows only the ZOA and the proposed method and ignores the third method. It is clear that, both ZOA and
the direct exact method are impractical, while the proposed method tremendously reduced the computational
time. This comparison ensures the superiority of our method.



Table 4
CPU elapsed time required for geometric moment’s computation (s)

ZOA Direct exact method Proposed method

N = 512, Max = 10 84.750 182.719 0.4380
N = 512, Max = 20 500.313 1090.1 0.8280
N = 512, Max = 30 1257 2650.8 1.870

Fig. 3. CPU elapsed time in seconds.
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5. Conclusion

This paper proposes a new exact and fast method for computing 2D, and 3D geometric moments for gray
level images. The geometric moment values calculated by using the approximated method are deviated from
those theoretical values, where the error steadily increases as the moment order increases. On the other hand,
geometric moments calculated using the proposed method are identical to those obtained by theoretical cal-
culations. The computation time of the proposed method is extremely smaller than that of the approximated
method and the direct method. It is obvious that, the proposed method is more outperformed than all avail-
able methods for geometric moment computations.
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