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a b s t r a c t

Fast and accurate method is proposed for radial moment’s computation. Exact radial moments are com-
puted as a linear combination of exact geometric moments. The digital image is transformed to be inside
the unit circle, where the transformed image is divided into four quadrants. Based on the symmetry prop-
erty; only one quadrant of transformed image is needed to compute the whole set of moments. This leads
to significant reduction in the computational complexity requirements. The proposed method completely
removes the approximation errors and tremendously reduced the computational demands. Numerical
experiments are performed, where the obtained results are compared with the approximated values.
The obtained results clearly explained the efficiency of the proposed method.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Circularly orthogonal moments, such as Zernike, Pseudo-Zer-
nike and Fourier-Mellin moments are generally used to represent
an image with the minimum amount of information redundancy
(Teague, 1980). In addition to this attractive property, the set of cir-
cularly orthogonal moments are rotation and flipping invariants by
nature, while the translation and scale invariants are easily
achieved through the normalization of their polynomials. Based
on their attractive characteristics, circularly orthogonal moments
are widely used in image processing, pattern recognition and com-
puter vision. Circularly orthogonal moments are used as invariant
pattern or object recognition (Khotanzad and Hong, 1990; Wang
and Healey, 1998; Kan and Srinath, 2002; Broumandnia and
Shanbehzadeh, 2007), content-based image retrieval (Kim and
Kim, 1998), watermarking and data-hiding (Kim and Lee, 2003;
Xin et al., 2004; Amin and Subhulukshini, 2004), edge detection
(Ghosal and Mehrotra, 1992; Dong et al., 2005; Bin et al., 2008),
image segmentation (Ghosal and Mehrotra, 1993), biomedical
engineering (Iskander et al., 2001, 2002), medical imaging
(Bharathi and Ganesan, 2008), and face recognition (Haddadnia
et al., 2003; Kim and Kim, 2008; Kanan and Faez, 2009).

Radial moment’s computation is the main part of the computa-
tional process of these orthogonal moments, where all of these mo-
ments could be expressed as linear combinations of radial
ll rights reserved.
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moments. Approximate computation of radial moments produced
numerical instabilities and consequently degraded the quality of
the computed descriptors.

Digital images are usually defined in the Cartesian coordinates
while the circular moments are by nature defined in the polar coor-
dinates. Consequently, computation of these circular moments re-
quired square-to-circle transformation which produced what is
called geometric error. The other kind of error is the numerical er-
ror which is the direct result of approximation process. Zernike
(ZMs) and Pseudo-Zernike moments (PZMs) could be expressed
as a linear combination of radial or geometric moments of the
same order or less (Teh and Chin, 1988). Orthogonal Fourier-Mellin
moments (OFMMs) were defined first by Sheng and Shen (1994).
Similar to ZMs and PZMs, OFMMs could be expressed as a linear
combination of radial or geometric moments. It is clear that, the
computational accuracy of all the aforementioned circularly
orthogonal moments is dependent on the computational accuracy
of the radial moments.

Recently Wee and Paramesran (2006), proposed a method that
compute approximate radial moments using symmetry property.
In fact, their method reduces the computational complexity
requirements but on the other side it produces a set of approxi-
mate radial moments, where the numerical error problem is still
unsolved.

Apart from the circular orthogonal moments, other orthogonal
moments like Legendre, Gegenbauer, Tchebichef and Krawtchouk
moments could be expressed as a linear combination of only geo-
metric moments of the same order or less. Also Novotni and Klein
(2004) shows that 3D Zernike moments could be expressed as a
combination of geometric moments. Therefore, the implementation
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of symmetrical property to radial moment’s computation as done
by Wee and Paramesran (2006) limited its benefit to circular
orthogonal moments, while, its implementation to geometric
moment’s computation make it useful in the computation of all
orthogonal moments and their extension to three-dimension. This
is the motivation of this work, where the symmetrical property is
implemented in the process of exact geometric moment’s
computation.

This paper proposes a new method for accurate computation of
radial moments for gray-level images and objects. The radial mo-
ments are computed exactly as a linear combination of exact geo-
metric moments, while the later are computed exactly by using a
mathematical integration of the monomial polynomials. The sym-
metry property and fast algorithm are applied for computational
complexity reduction. Experimental results clearly show the effi-
ciency of this proposed method.

The rest of the paper is organized as follows: in Section 2, an
overview of the radial moments is presented. The proposed meth-
od is described in Section 3. Section 4 is devoted to numerical
experiments. Conclusion and concluding remarks are presented
in Section 5.
2. Radial moments

Radial or rotational moments of order p and repetition q are de-
fined as:

Rpq ¼
Z 2p

0

Z 1

0
rpe�îqhf r cos h; r sin hð Þrdrdh; ð1Þ

where î ¼
ffiffiffiffiffiffiffi
�1
p

;p ¼ 0;1;2;3; . . . ;1 and q is any positive or negative
integer. Based on Eq. (1), radial moments are defined in terms of po-
lar coordinates (r,h) over a unit disk. On the other side, image inten-
sity function defined in Cartesian coordinates (x,y). Consequently,
an appropriate image mapping is imperative. There are mainly
two traditional mapping approaches. In the first approach, the
square image plane is mapped onto a unit disk, where the center
of the image is assumed to be the origin of coordinates. In this ap-
proach, all pixels outside the unit disk are ignored, which results in
a loss of some image information. In the second approach, the
whole square image is mapped inside the unit disk, where the cen-
ter of the image is assumed to be the coordinate origin. The second
approach overcomes the lost information problem in the first kind
of transformation.

For a digital image of size N � N the integrals in Eq. (1) are re-
placed by summations and the image is normalized inside the unit
disk using second aforementioned mapping transformations. The
approximated radial moments are:

eRpq ¼ kp

XN�1

i¼0

XN�1

i¼0

rp
ije
�îqhij f i; jð Þ: ð2Þ

Eq. (2) is so-called direct method for radial moment’s computation,
which is the approximated version using zeroth-order approxima-
tion (ZOA). kp is the total number of pixels that achieve the condi-
tion jrijj 6 1. This equation has two sources of errors, the first one
is the numerical error and the other is the geometrical error. The
numerical error is caused by approximating integrals in Eq. (1)
through replacing them by summations. Based on the principles
of mathematical analysis, summations are equivalent to integrals
as the number of sampling points tends to infinity. Consequently,
the numerical error increases as the number of sampling points de-
creases. Also, this error increases as the order of moments increases.
Therefore, numerical instabilities are faced when the moment order
reaches a certain value. The geometrical error is caused by a square
to circular mapping transformation.
2.1. Circular orthogonal moments via radial moments

Circular orthogonal moments are represented as a linear combi-
nation of radial moments of the same order or less. Relations of
ZMs, PZMs and OFMMs with radial moments are briefly discussed
through the following subsections.

2.1.1. Zernike moments
The complex two-dimensional Zernike moments of order p and

repetition q are defined as a linear combination of radial moments
as follows:

Zpq ¼
pþ 1

p
Xp

k¼q
p�k¼even

BpqkRkq; ð3Þ

where p ¼ 0;1;2;3; . . . ;1 and q is positive integer according to the
conditions p � q = even, q 6 p. Zernike moments with negative val-
ues of repetition q are obtained directly by making use of the com-
plex conjugate of Zernike moments in Eq. (3). The coefficient matrix
Bpqk is defined as:

Bpqk ¼
ð�1Þ

p�k
2ð Þ pþk

2

� �
!

p�k
2

� �
! kþq

2

� �
! k�q

2

� �
!

ð4Þ

and recursively computed through the following relations:

Bppp ¼ 1; ð5:1Þ

Bp q�2ð Þp ¼
pþ q

p� qþ 2
Bpqp; ð5:2Þ

Bpq k�2ð Þ ¼ �
kþ qð Þ k� qð Þ

pþ kð Þ p� kþ 2ð ÞBpqk: ð5:3Þ
2.1.2. Pseudo-Zernike moments
Pseudo-Zernike moments of order p and repetition q are defined

as a linear combination of radial moments as follows:

Apq ¼
pþ 1

p
Xp

k¼q

CpqkRkq; ð6Þ

where the coefficient matrix Cpqk is defined as:

Cpqk ¼
�1ð Þ p�kð Þ pþ kþ 1ð Þ!

p� kð Þ! kþ qþ 1ð Þ! k� qð Þ! : ð7Þ

Similar to the previous case, this matrix could be computed through
the following recurrence relations:

Cppp ¼ 1; ð8:1Þ

Cp q�1ð Þk ¼
kþ qþ 1
k� qþ 1

Cpqk; ð8:2Þ

Cpq k�1ð Þ ¼ �
kþ qþ 1ð Þ k� qþ 1ð Þ
pþ kþ 1ð Þ p� kþ 1ð ÞBpqk: ð8:3Þ
2.1.3. Fourier-Mellin moments
Orthogonal Fourier-Mellin moments of order p and repetition q

are defined as a linear combination of radial moments as follows:

Opq ¼
pþ 1

p
Xp

k¼0

apkRkq; ð9Þ

where the coefficient matrix ap k is defined as:

apk ¼
�1ð Þ pþkð Þ pþ kþ 1ð Þ!

p� kð Þ!k! kþ 1ð Þ! : ð10Þ
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This matrix is computed using the following equations:

ap0 ¼ �1ð Þp pþ 1ð Þ; ð11:1Þ

apk ¼ �
pþ kþ 1ð Þ p� kþ 1ð Þ

k kþ 1ð Þ ap k�1ð Þ: ð11:2Þ
Fig. 2. The image is divided into four equal quadrants.
3. The proposed method

The proposed method aims to provide a fast computation of ex-
act radial moments. In addition to these elegant characteristic, the
proposed method is a low-complexity method where it reduces the
requirements by 75%. Through the next subsection, all these char-
acteristics will be discussed in details.

3.1. Symmetry property

A digital image of size N � N is an array of pixels. The centers of
these pixels are the points (xi,yj), where the image intensity func-
tion is defined only for this discrete set of points
(xi,yj) 2 [0,N � 1] � [0,N � 1]. Dxi = xi+1 � xi, Dyj = yj+1 � yj are sam-
pling intervals in the x- and y-directions, respectively. The second
square-to-circle mapping approach is applied as shown in Fig. 1,
where the transformed coordinates are:

xi ¼
2i� N � 1

N
ffiffiffi
2
p ; yj ¼ �

2j� N � 1
N
ffiffiffi
2
p ; ð12:1Þ

rij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xið Þ2 þ yj

� �2
q

; hij ¼ tan�1 yj

xi

� �
ð12:2Þ

with i ¼ 1;2; . . . ;N and j ¼ 1;2; . . . ;N.
The transformed image is inside the unit circle. The center of

this image coincides with the Cartesian coordinate origin. Both
axes divide the transformed image into four quadrants. Each point
P1 with the Cartesian coordinates (xi,yj) in the first quadrant which
has three similar points in the other three quadrants as shown in
Fig. 2. These points are P2(xN�i+1,yj), P3(xN�i+1, yN�j+1) and
P4(xi,yN�j+1). All of these four points have the same radial distance
from the origin point as shown in Fig. 3.

The geometric moments of the order (p + q) are the projection of
the image function f(x,y) onto the monomial xpyq and defined as:

Mpq ¼
Z 1

�1

Z 1

�1
xpyqf x; yð Þdxdy: ð13Þ

Since the points P1, P2, P3 and P4 has the same radial distance, then;
the numerical value of xpyq will be dependent on whatever p and q
Fig. 1. The whole square image is
are even or odd. For more clarification, we consider the following
illustrative example. Assume the first point P1 has the coordinates
P1ðx7; y3Þ ¼ P1 5=8

ffiffiffi
2
p

;3=8
ffiffiffi
2
p� �

. Consequently, the coordinates of
the other three points are P2ð�x7; y3Þ, P3(�x7, �y3) and P2(x7, �y3).
Numerical values of xpyq for the points P1, P2, P3 and P4 with differ-
ent possibilities of exponent indices p and q are listed in Table 1.

Based on this symmetry property and the results obtained in
Table 1, the geometric moments can then be evaluated according
to the following four cases:

Case 1: p and q are both even;

fk xi; yj

� �
¼ f1 xi; yj

� �
þ f2 xi; yj

� �
þ f3 xi; yj

� �
þ f4 xi; yj

� �
; ð14:1Þ

Case 2: p is even and q is odd;

fk xi; yj

� �
¼ f1 xi; yj

� �
þ f2 xi; yj

� �
� f3 xi; yj

� �
� f4 xi; yj

� �
; ð14:2Þ

Case 3: p is odd and q is even;

fk xi; yj

� �
¼ f1 xi; yj

� �
� f2 xi; yj

� �
� f3 xi; yj

� �
þ f4 xi; yj

� �
; ð14:3Þ

Case 4: p and q are both odd;

fk xi; yj

� �
¼ f1 xi; yj

� �
� f2 xi; yj

� �
þ f3 xi; yj

� �
� f4 xi; yj

� �
: ð14:4Þ
mapped inside the unit disk.



Fig. 3. Radial distances from the origin to a specific pixel in the four quadrants are
equal.

Table 1
Numerical values of xpyq are dependent on whatever p and q are even or odd.

p q xpyq

P1 P2 P3 P4

Even = 4 Even = 2 +0.000965 +0.000965 +0.000965 +0.000965
Even = 2 Odd = 1 +0.031074 +0.031074 �0.031074 �0.031074
Odd = 3 Even = 2 +0.003641 �0.003641 �0.003641 +0.003641
Odd = 3 Odd = 1 +0.008239 �0.008239 +0.008239 �0.008239
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where f1(xi,yj) is the intensity function of the pixel point (xi,yj) in
the first quadrant; the other functions f2(xi,yj), f3(xi,yj) and f4(xi,yj)
are the intensity functions at the corresponding pixel points in
the second, third and fourth quadrants, respectively.
3.2. Exact computation of radial moments

According to the square-to-circle transformation, the trans-

formed image is defined in the square �1=
ffiffiffi
2
p

;1=
ffiffiffi
2
ph i
�

�1=
ffiffiffi
2
p

;1=
ffiffiffi
2
ph i

; therefore, the (p + q) order geometric moments

are defined as:

Mpq ¼
Z 1ffiffi

2
p

� 1ffiffi
2
p

Z 1ffiffi
2
p

� 1ffiffi
2
p

xpyqf x; yð Þdxdy: ð15Þ

Radial moments are expressed as a linear combination of geometric
moments of the same order or less as follows (Hosny, 2008):

Rpq ¼
XS

j¼0

Xq

m¼0

wm S

j

� �
q

m

� �
Mp�2j�m;2jþm ð16:1Þ

with

Rpp ¼
Xp

m¼0

wm p

m

� �
Mp�m;m; ð16:2Þ

where S = (p � q)/2, w ¼ �
ffiffiffiffiffiffiffi
�1
p

if q > 0 or w ¼
ffiffiffiffiffiffiffi
�1
p

if q 6 0. Based
on Eq. (16), exact computation of geometric moments results in ex-
act values of radial moments. As shown in (Hosny, 2008), the time-
consuming direct computations of factorial terms are avoided by
using recurrence relations:
D0;0 ¼ 1; ð17:1Þ
Dp;0 ¼ 1; ð17:2Þ

Dp;k ¼
p

p� k
Dp�1;k; ð17:3Þ

Dp;k ¼
1

k p� kð ÞDp;k�1: ð17:4Þ

It is clear that, the matrix D is independent on the image, where its
dimensions are dependent only on the moment’s order. Therefore,
this matrix is pre-computed and stored for future use.

Similar to our previous work (Hosny, 2007), exact geometric
moments for the whole input image could be easily obtained
through the computation of the first quadrant only. This could be
achieved by using the augmented intensity function fk(xi,yj) de-
fined in Eq. (14). As discussed in the previous section, the aug-
mented intensity function has four different values based on
whatever the indices p and q are even or odd as follows:

bMpq ¼
XN

2b c

i¼1

XN
2b c

j¼1

Ip ið ÞIq jð Þfk xi; yj

� �
; ð18Þ

where

N
2

	 

¼
ðN � 1Þ=2; N is odd;
N=2; N is even:

�
ð19Þ

Implementation of Eq. (18) results in the reduction of the compu-
tational cost by 75%, where only one quadrant is considered. For
more details about computational complexity, the reader is ad-
vised to read Section 4.2. The kernels Ip(i) and Iq(j) are defines
as follows:

Ip ið Þ ¼ 1
pþ 1

Upþ1
iþ1 � Upþ1

i

h i
; ð20:1Þ

Iq jð Þ ¼ 1
qþ 1

Vqþ1
j � Vqþ1

jþ1

h i
ð20:2Þ

with

Uiþ1 ¼ xi þ
Dxi

2
; ð21:1Þ

Ui ¼ xi �
Dxi

2
; ð21:2Þ

Vjþ1 ¼ yj þ
Dyj

2
; ð21:3Þ

Vj ¼ yj �
Dyj

2
: ð21:4Þ

The time complexity of Eq. (18) could be significantly reduced
by successive computation of the 1D qth order moments for
each row. Eq. (18) will be rewritten in the following separable
form:

bMpq ¼
XN

2b c

i¼1

Ip ið ÞYiq; ð22Þ

where

Yiq ¼
XN

2b c

j¼1

Iq jð Þfk xi; yj

� �
: ð23Þ

Yi q in Eq. (23) is the qth order moment of row i. Since,

I0 ið Þ ¼
ffiffiffi
2
p

=N: ð24Þ

Substitute Eq. (24) into Eq. (18), yields:

bM0q ¼
ffiffiffi
2
p

N

XN
2b c

i¼1

Yiq: ð25Þ



Table 2
Comparison of theoretical, Rpq, exact, bRpq , and ZOA, eRpq for f(xi,yj) = 1.

p q Theoretical, Rpq Exact, bRpq ZOA, eRpq

0 0 2.0007 2.0007 2.0007
1 0 0.0000 0.0000 0.0000
1 1 0.0000 0.0000 0.0000
2 0 0.6666 0.6666 0.6250
2 1 0.3333 0.3333 0.3125
2 2 0.0000 0.0000 0.0000
3 0 0.0000 0.0000 0.0000
3 1 0.0000 0.0000 0.0000
3 2 0.0000 0.0000 0.0000
3 3 0.0000 0.0000 0.0000
4 0 0.3111 0.3111 0.2578
4 1 0.1555 0.1555 0.1289
4 2 0.0000 0.0000 0.0000
4 3 �0.066 �0.066 �0.0664
4 4 �0.1333 �0.1333 �0.1328
5 0 0.0000 0.0000 0.0000
5 1 0.0000 0.0000 0.0000
5 2 0.0000 0.0000 0.0000
5 3 0.0000 0.0000 0.0000
5 4 0.0000 0.0000 0.0000
5 5 0.0000 0.0000 0.0000
6 0 0.1714 0.1714 0.1196
6 1 0.0857 0.0857 0.0598
6 2 0.0000 0.0000 0.0000
6 3 �0.0476 �0.0476 �0.0402
6 4 �0.0952 �0.0952 �0.0805
6 5 �0.0476 �0.0476 �0.0402
6 6 0.0000 0.0000 0.0000

Table 3
Comparison of theoretical, Rpq, exact, bRpq , and ZOA, eZpq for f(xi, yj) = A.

p q Theoretical, Rpq Exact, bRpq ZOA, eZpq

0 0 7.5000 7.5000 7.5000
1 0 0.1325 0.1325 0.1325
1 1 0.1325 � 0.0883i 0.1325 � 0.0883i 0.1325 � 0.0883i
2 0 2.3437 2.3437 2.3437
2 1 1.0312 + 0.0859i 1.0312 + 0.0859i 0.9531 + 0.0859i
2 2 �0.2812 + 0.1718i �0.2812 + 0.1718i �0.2812 + 0.1718i
3 0 0.0082 0.0082 0.0027
3 1 0.0082 � 0.0036i 0.0082 � 0.0036i 0.0076 � 0.0022i
3 2 0.0414 + 0.0036i 0.0414 + 0.0036i 0.0386 + 0.0055i
3 3 0.0745 + 0.0110i 0.0745 + 0.0110i 0.0745 + 0.0110i
4 0 1.0950 1.0950 0.9082
4 1 0.4947 + 0.0664i 0.4947 + 0.0664i 0.4101 + 0.0610i
4 2 �0.1054 + 0.1328i �0.1054 + 0.1328i �0.0878 + 0.1220i
4 3 �0.3125 + 0.0839i �0.3125 + 0.0839i �0.3027 + 0.0786i
4 4 �0.5195 + 0.0351i �0.5195 + 0.0351i �0.5175 + 0.0351i
5 0 �0.0092 �0.0092 �0.0098
5 1 �0.0092 + 0.0098i �0.0092 + 0.0098i �0.0098 + 0.0100i
5 2 0.0154 + 0.0121i 0.0154 + 0.0121i 0.0120 + 0.01173i
5 3 0.0401 + 0.0143i 0.0401 + 0.0143i 0.0340 + 0.0134i
5 4 0.0266 � 0.0098i 0.0266 � 0.0098i 0.0236 � 0.0103i
5 5 0.0131 � 0.0340i 0.0131 � 0.0340i 0.0132 � 0.0341i
6 0 0.61209 0.61209 0.42968
6 1 0.2845 + 0.0536i 0.2845 + 0.0536i 0.2011 + 0.0431i
6 2 �0.0430 + 0.1073i �0.0430 + 0.1073i �0.0274 + 0.0863i
6 3 �0.2037 + 0.0610i �0.2037 + 0.0610i �0.1675 + 0.0486i
6 4 �0.3644 + 0.0146i �0.3644 + 0.0146i �0.3076 + 0.011i
6 5 �0.1756 � 0.0684i �0.1756 � 0.0684i �0.1477 � 0.0699i
6 6 0.0131 � 0.1514i 0.0131 � 0.1514i 0.0121 � 0.1508i
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4. Numerical experiments

In this section, the validity proof of the proposed method will be
presented. Artificial test images are used in our numerical experi-
ments where, radial moments that are computed using the pro-
posed method are compared with theoretical and ZOA
approximate values. Both ZOA and Wee’s method (Wee and Para-
mesran, 2006), are used to approximately compute a set of radial
moments, where the later one was derived from the same formula
of ZOA method. The artificial test images are relatively small so
that hand calculations can be easily employed. CPU elapsed time
for real standard images are used to compare the required compu-
tational time of the proposed method against ZOA and Wee’s
method.

4.1. Artificial test images

4.1.1. First image
Artificial test images of small size are used to prove validity of

the proposed method, where hand calculations could be employed
and the theoretical values easily obtained. A special image with
intensity function, f(x,y) = 1 for all points (x,y) is considered. The
size of this artificial test images is 4 � 4. The original image that
is defined in the square [�1,1] � [�1,1] is mapped to be inside
the unit circle, where the coordinate origin is the center of the cir-
cle. The image center coincides with the circular center. The

mapped image is defined in the square �1=
ffiffiffi
2
p

;1=
ffiffiffi
2
ph i
�

�1=
ffiffiffi
2
p

;1=
ffiffiffi
2
ph i

. Consequently, the set of two-dimensional geomet-

ric moments of order (p + q) are:

Mpq ¼
1=

ffiffiffi
2
p� �pþ1

� �1=
ffiffiffi
2
p� �pþ1

pþ 1

0
B@

1
CA 1=

ffiffiffi
2
p� �qþ1

� �1=
ffiffiffi
2
p� �qþ1

qþ 1

0
B@

1
CA:

ð26Þ

Eq. (26) can be simplified as follows:

Mpq ¼
4 1=

ffiffi
2
pð Þpþqþ2

pþ1ð Þ qþ1ð Þ ; p ¼ even;

0; p ¼ odd:

8<
: ð27Þ

In this case, theoretical values of radial moments are calculated by
using Eq. (27) into Eq. (16). The corresponding exact values are cal-
culated using Eqs. (22)–(25) and (14) in Eq. (16). The ZOA approxi-
mated values using Eq. (2). It is clear that exact and theoretical
values are identical. For quick comparison, all calculated values
are shown in Table 2.

4.1.2. Second image
The intensity function of the second artificial test image is rep-

resented by the matrix: A ¼ ½3;2;1;5; 6;1;7;3; 2;8;4;6; 5;1;4;2�.
Radial moments for this image are shown in Table 3. It is obvious
that the computed values using the proposed method are identical
to theoretical values, while the approximate ZOA values deviate
from the theoretical values especially when the moment order in-
creases, see Table 3.

4.2. Computational complexity

Complexity analysis of the considered methods is very impor-
tant, where such analysis give a simple and clear way to judge
the efficiency of the different methods. Complexity analysis mainly
concentrates on the number of multiplications and additions re-
quired by each method. Evaluation of factorial terms, exponential
and power functions are considered if encounter in any one of
the considered methods. For a gray-level image of size N � N and
a maximum moment order equal to Max, the analysis of the direct
ZOA approximation method represented by Eq. (2) is discussed
first. Computation of an individual radial moment required the
evaluation of the power function rp

ij and the exponential function
e�îqhij plus six multiplication process. Three are included in the
evaluation of the exponential function and the rest are a result of
multiplying both power and exponential function with the image



Table 4
Complexity analysis of radial moment’s computation methods: for gray-level image of size N � N and a maximum moment order equal to Max.

ZOA method Wee’s method (2006) Proposed method

Multiplications 6N2(Max + 1)2 6(N/2)2(Max + 1)2 Maxþ1ð Þ
4 N2 þ NMaxþ 4

h i
þ Maxþ 1ð Þ Maxþ 2ð Þ þ 3Max Max=2b c Maxþ 1ð Þ=2b c

Additions N2(Max + 1)2/2 (N/2 )2(Max + 1)2/2 Maxþ1ð Þ
4 N2 � 4þMax N � 2ð Þ

h i
þMax Maxþ 1ð Þ=2þ Max� 1ð Þ Max=2b c Maxþ 1ð Þ=2b c

Power functions N2(Max + 1)2 (N/2)2(Max + 1)2 –
Exponential functions N2(Max + 1)2 (N/2)2(Max + 1)2 –

Table 5
Complexity analysis of geometric moment’s computation methods: for gray-level
image of size N � N and a maximum moment order equal to Max.

GM Multiplications Additions

ZOA method (Max + 1)(Max + 2)N2 Maxþ1ð Þ Maxþ2ð Þ
2 N2

Wee’s method
(2008)

Maxþ 1ð Þ Maxþ 2ð Þ N
2

� �2 Maxþ1ð Þ Maxþ2ð Þ
2

N
2

� �2

Hosny’s method
(2007)

Maxþ 1ð Þ N2 þ NMax
2 þ 1

h i
Maxþ 1ð Þ N2 þ N�2ð ÞMax

2 � 1
h i

Proposed method Maxþ1ð Þ
4 N2 þ NMaxþ 4

h i
Maxþ1ð Þ

4 N2 � 4þMax N � 2ð Þ
h i
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intensity function. All of these processes are repeated for all pixels
of the input image. Therefore, we could summarize the computa-
tional complexity of the direct method as 6N2(Max + 1)2 multipli-
cations, N2(Max + 1)2/2 additions, N2(Max + 1)2 power functions
and finally N2(Max + 1)2 exponential functions.

Complexity analysis of the approximation method of (Wee and
Paramesran, 2006) is very similar to the direct method except the
implementation of the symmetrical property to compute radial
moment functions in the first quadrant and then obtained the ra-
dial moment functions of the other three octants straightforward.
Unfortunately, radial moment’s computation by using the method
of Wee and Paramesran required the evaluation of both power and
exponential functions. The method of (Wee and Paramesran, 2006)
required 6(N/2)2(Max + 1)2 multiplications, (N/2)2(Max + 1)2/2
additions, evaluation of (N/2)2(Max + 1)2 power functions and fi-
nally (N/2)2(Max + 1)2 exponential function evaluation.

The proposed method consists of two main steps. First one is
the exact computation of geometric moments and the second is
the radial moment’s computation as a linear combination of geo-
metric moments. The number of independent geometric moments
Fig. 4. Test images: (a) p
for a maximum order Max is (Max + 1)(Max + 2)/2. The complexity
analysis of exact geometric moment’s computation by using Eqs.
(22), (23) and (25) is discussed in details. Creation of the matrix
Yi q in Eq. (23) requires (N/2)2(Max + 1) additions and (N/2)2

(Max + 1) multiplications. First row computation of geometric mo-
ments using Eq. (25) requires (N/2 � 1)(Max + 1) additions and
(Max + 1) multiplications. The rest of geometric moments are com-
puted using Eq. (22) which requires (N/2 � 1)(Max/2)(Max + 1)
additions and (N/2)(Max/2)(Max + 1) multiplications.

The complexity analysis of radial moment’s computation as a
linear combination of geometric moments by using Eqs. (16.1)
and (16.2) are divided into two stages. First one concerned with
Eq. (16.2) which requires Max(Max + 1)/2 additions and (Max + 1)
(Max + 2) multiplications. The second stage represented by Eq.
(16.1) that requires (Max � 1)bMax/2cb(Max + 1)/2c and
3MaxbMax/2cb(Max + 1)/2c multiplications, where the operator
b� c is defined using Eq. (19).

Complexity analysis of the direct ZOA (Wee and Paramesran,
2006) and the proposed methods are summarized in Table 4. It is
easy to compare these three methods. For N = 512 and Max = 55,
the direct ZOA (Wee and Paramesran, 2006) and the proposed
method requires 4932501504, 1233125376 and 4192244 multipli-
cations, respectively. These methods require 411041792,
102760448 and 4105024 additions, respectively. The reader must
notice that, the power and exponential functions are excluded
from the comparison. It is obvious that, the proposed method tre-
mendously reduces the computational complexity.

The proposed method includes a modified algorithm for fast
computation of geometric moments. To clearly demonstrate the
efficiency of this method, a complexity analysis of it is compared
with the existing methods like, direct ZOA (Hosny, 2007; Wee
et al., 2008). Table 5 shows the number of multiplications and
additions required by each of the aforementioned methods. A
eppers and (b) boat.



Table 7
CPU elapsed time in seconds for the 512 � 512 boat’s gray-scale test image.

Moment order ZOA method Wee’s method (2006) Proposed method

Max = 5 14.0620 4.141000 0.859000
Max = 15 177.5310 44.922000 1.312000
Max = 25 501.5780 141.407000 1.797000
Max = 35 991.7030 278.187000 2.438000
Max = 45 1596.9680 455.672000 3.219000
Max = 55 2452.4530 690.047000 4.328000
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quick comparison of these four methods could be done for N = 512
and Max = 55, the direct ZOA (Wee et al., 2008; Hosny, 2007) and
the proposed method require 836763648, 209190912, 16257080
and 4064312 multiplications, respectively. These methods require
418381824, 104595456, 15465408 and 4062660 additions, respec-
tively. It is clear that, the proposed method is the most efficient
one.

4.3. Computational time

The main drawback of using circularly moments is their con-
suming computational time. Therefore, computational time reduc-
tion is a very important issue especially for large size images and
objects. The CPU elapsed time is used in the comparison process
in all the performed numerical experiments. All our numerical
experiments are performed with 1.8 GHz Pentium IV PC with 512
MBYTE RAM. The executed code is designed by using MATLAB7.
The set of radial moments is computed by using the proposed
method, the method of (Wee and Paramesran, 2006) and the
approximation ZOA method. In the first experiment, a gray-scale
image of peppers with size 128 � 128 as in Fig. 4a is used. The
CPU elapsed times for the three different methods are included
in Table 6. It is clear that, the proposed method reduce the execu-
tion time tremendously.

In the second numerical experiment, the set of radial moments
are computed for the boat test images with size 512 � 512. This
test image is relatively large. The CPU elapsed times are graphically
represented Fig. 5. Tables 7 shows the elapsed times of the differ-
ent methods for a selected moment orders. Similar to results of the
previous numerical experiments the execution time of ZOA and
Wee’s methods monotonically increase as the moment order in-
crease, while the execution time required by the proposed method
Table 6
CPU elapsed time in seconds for the 128 � 128 pepper’s gray-scale test image.

Moment order ZOA method Wee’ method (2006) Proposed method

Max = 5 0.7340 0.203000 0.016000
Max = 15 7.4370 2.047000 0.047000
Max = 25 23.6100 5.703000 0.110000
Max = 35 53.0310 11.87500 0.219000
Max = 45 91.9690 22.34400 0.453000
Max = 55 137.8600 36.06300 0.860000
Max = 65 193.4380 51.98500 1.531000

Fig. 5. Linear scale of CPU elapsed time in seconds for the 512 � 512 gray-scale
boat image
is extremely small. Based on the obtained results we conclude that,
both ZOA and Wee’s methods are impractical for large images and
moments with higher orders.

The obtained results in this section clearly shows that, our pro-
posed method is accurate where the set of radial moments are
computed exactly using a set of exact geometric moments, while,
on the other side, Wee’s method is inaccurate where the set of ra-
dial moments are computed approximately. The comparison of the
CPU elapsed times ensures the superiority of the proposed method
against Wee’s method, where the proposed method extremely re-
duces the execution times.
5. Conclusion

This work proposes fast, accurate and low-complexity method
of radial moment computation for gray-scale images. Due to the
wide range of their applications, the accurate computation of circu-
lar moments is a very crucial problem. Based on their relation with
the geometric moments, radial moments are computed exactly.
Consequently, the set of circular moments could be accurately
computed based on their representation as a linear combination
of radial moments. The implementation of the symmetry property
significantly reduces the computational complexity demands. The
numerical experiments are performed for real images with differ-
ent sizes to ensure the efficiency of the proposed method.
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