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Abstract

Affine moment invariants are widely used in pattern recognition and computer vision. The affine transform usually
decomposed into a set of geometric transforms. The computation of these transforms relies on their relations with the geo-
metric moments. Approximate computation of geometric moments produced a very large dynamic range that results in
numerical instabilities. In this work, an exact method is used for the computation of affine moment invariants for gray
level images, where the proposed method completely removes the approximation errors. Numerical experiments are per-
formed to test the invariance of symmetric as well as asymmetric images subject to affine transformations. A comparison
with the approximation method is made. The obtained results clearly explained the efficiency of the proposed method.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Affine moment invariants are useful features of an image as they are invariant to general linear transfor-
mations of the image. Reiss [1] and Flusser and Suk [2] independently introduced affine moment invariants
and proved their applicability in simple recognition tasks. Their affine transforms were decomposed into trans-
lation, anisotropic scaling and two skews.

Rothe and his co-authors [3] proposed the concept of affine normalization. In their work, two different
affine decompositions were used. The first called XSR consists of two skews, anisotropic scaling and rotation.
The second is the XYS and consists of two skews and anisotropic scaling. Zhang et al. [4] performed a study of
these affine decompositions and pointed out that both transformations led to some ambiguities. Pei and Lin [5]
presented a method for affine normalization. Their method dealt only with asymmetrical objects. Shen and Ip
[6] used the generalized complex moments in polar coordinates in recognition of symmetrical objects. Yang
and Cohen [7] introduced the concept of cross-weighted moments to recover the affine transformation param-
eters. This method is very consuming where the complexity of computing a crossed-weighted moment of
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M · N digital image will be O((M · N)2). Recently, Suk and Flusser [8] proposed a method for affine
normalization for symmetric objects. Their method used geometric transformations as well as the complex
moments.

As we see, all of the aforementioned methods used either geometric and/or complex moment in Cartesian
or polar coordinates. The computation of complex moments and the affine moment invariants in polar coor-
dinates produced two kinds of errors. The first is the numerical error which is the direct result of approxima-
tion process. Second is the geometric error that is a result of circle to square mapping. Unfortunately, all
methods listed above are suffering from at least one of these errors which degraded the accuracy of the com-
puted values. Recently, Hosny [9] proposed a new method for exact and fast computation of geometric
moments, where the numerical error is completely removed. Complex moments could be computed exactly
as a combination of exact geometric moments. Consequently, affine moment invariants are computed exactly.

This paper proposes a new method for accurate computation of affine moment invariants in case of sym-
metric as well as asymmetric gray level images and objects. A set of two-dimensional geometric moments are
computed exactly by using a mathematical integration of the monomial polynomials, then complex moments
and affine moments invariants are exactly calculated based on the algebraic relations with geometric moments.
A fast algorithm is applied for computation complexity reduction. Experimental results clearly show the effi-
ciency of this proposed method.

The rest of the paper is organized as follows: In Section 2, an overview of the exact and fast algorithm for
geometric moment’s computations is presented. Affine transformations and algebraic relations that produced
affine moment invariants are described in Section 3. Section 4 is devoted to numerical experiments. Conclusion
and concluding remarks are presented in Section 5.
2. Exact computation of geometric moments

Regular or geometric moments of order (p + q) for image intensity function f(x,y) are defined as
mpq ¼
Z 1

�1

Z 1

�1
xpyqf ðx; yÞdxdy; ð1Þ
with p,q P 0. A digital image of size M · N is an array of pixels. Centers of these pixels are the points (xi,yj),
where the image intensity function is defined only for this discrete set of points (xi,yj) e [0,M � 1] · [0, N � 1].
Dxi = xi+1 � xi, Dyj = yj+1 � yj are sampling intervals in the x-and y-directions, respectively. In the literature
of digital image processing, the intervals Dxi and Dyj are fixed at constant values Dxi = 1, and Dyj = 1, respec-
tively. Therefore, the set of points (xi,yj) will be defined as follows:
xi ¼ i� 1

2

� �
Dx; ð2:1Þ

yj ¼ j� 1

2

� �
Dy; ð2:2Þ
with i ¼ 1; 2; 3; . . . ; M and j ¼ 1; 2; 3; . . . ; N . For the discrete-space version of the image, Eq. (1) is usually
approximated as
~Mpq ¼
XM

i¼1

XN

j¼1

xp
i yq

j f ðxi; yjÞDxDy: ð3Þ
Eq. (3) is the so-called direct method for geometric moment’s computations, which is the approximated ver-
sion using zeroth-order approximation (ZOA). Eq. (3) is not a very accurate approximation of Eq. (1). Similar
to our previous work [9], the set of geometric moments can be computed exactly by
M̂pq ¼
XM

i¼1

XN

j¼1

IpðiÞIqðjÞf ðxi; yjÞ; ð4Þ
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where
IpðiÞ ¼
1

p þ 1
½Upþ1

iþ1 � U pþ1
i �; ð5:1Þ

IqðjÞ ¼
1

qþ 1
½V qþ1

jþ1 � V qþ1
j �; ð5:2Þ
and
U iþ1 ¼ xi þ
Dxi

2
; ð6:1Þ

U i ¼ xi �
Dxi

2
; ð6:2Þ

V jþ1 ¼ yj þ
Dyj

2
; ð6:3Þ

V j ¼ yj �
Dyj

2
: ð6:4Þ
3. Affine moment invariants

Moments are one of the parameters that describe the image or object of interest. Moment invariants are
moments which do not change under a group of transformations. Image normalization means bringing the
image to a position in which the effect of transformation is eliminated. Affine transformation is represented
by the following matrix form:
x0

y 0

� �
¼

a11 a12

a21 a22

� �
x

y

� �
þ

b1

b2

� �
: ð7Þ
To achieve normalization, affine transformation decomposed into a group of simple one-parameter trans-
forms [3,8]. This group consists of translation, uniform scaling, first rotation, stretching, and second rotation
x0 ¼ x� x0; y 0 ¼ y � y0; ð8:1Þ
x0 ¼ ax; y0 ¼ ay; ð8:2Þ
x0 ¼ x cos h� y sin h; y0 ¼ x sin hþ y cos h; ð8:3Þ

x0 ¼ dx; y0 ¼ 1

d
y; ð8:4Þ

x0 ¼ x cos /� y sin /; y0 ¼ x sin /þ y cos /; ð8:5Þ
where (x0,y0) is the centroid; a,d > 0; h,/ are the rotation angles. The image function is invariant under the
group of transformations (8) if and only if it is invariants under the general affine transformation (7).

3.1. Normalization to translation

Normalization to translation is achieved by shifting the image so that the image centroid ð�x; �yÞ coincides
with the origin of the coordinate system. The centroid of the image is
�x ¼ m10

m00

; �y ¼ m01

m00

: ð9Þ
The central moments
lpq ¼
Z 1

�1

Z 1

�1
ðx� �xÞpðy � �yÞqf ðx; yÞdxdy ð10Þ
are translation invariants. By using the binomial theorem, central moments are expressed as a linear combi-
nation of regular moments of the same order or less. Therefore, the last equation can be written as
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lpq ¼
Xp

k¼0

Xq

j¼0

p

k

� �
q

j

� �
ð��xÞp�kð��yÞq�jmkj: ð11Þ
According to Eq. (11), exact computation of geometric moments results in exact values for central moments.
The time-consuming direct computations of factorial terms are avoided by using the following recurrence
relations:
Dðp; kÞ ¼ p
p � k

Dðp � 1; kÞ; ð12:1Þ

Dðp; kÞ ¼ 1

kðp � kÞDðp; k � 1Þ; ð12:2Þ

Dð0; 0Þ ¼ 1; and Dðp; 0Þ ¼ 1; ð12:3Þ
where matrix D is created and stored for future use.

3.2. Normalization to scaling

Assume that a is a scaling factor in x- and y-directions, respectively. Any positive numeric values can be
assigned to the scaling factor, where values less than unity refer to size reduction and values greater than unity
mean size enlargement. Central moments after a uniform scaling are defined as
l0pq ¼ apþqþ2lpq: ð13Þ
The scale-normalized moments are
l0pq ¼
lpq

lk
00

; k ¼ p þ qþ 2

2
ð14Þ
3.3. Normalization to first rotation

Rotation through an angle h about the coordinate origin is represented by the following matrix form:
lrot
pq ¼

Z 1

�1

Z 1

�1
ðx cos h� y sin hÞpðy cos hþ x sin hÞqf ðx; yÞdxdy: ð15Þ
By using the binomial theorem with Eq. (15), moments of the normalized image with respect to first rotation
could be written as follows:
lrot
pq ¼

Xp

k¼0

Xq

j¼0

p

k

� �
q

j

� �
ð�1Þkðsin hÞqþk�jðcos hÞpþj�kl0pþq�k�j;kþj: ð16Þ
Rotation normalization can be achieved by the major principal axis method [10]. The principal axis moments
are obtained by rotating the axis of the central moments until lrot

11 is zero. The angle h is
h ¼ � 1

2
tan�1 2l11

l20 � l02

� �
: ð17Þ
This method gives accurate results only in case of non-symmetric images and shapes, while it fails with the N-
fold symmetrical objects with N > 2. This is a weak point, where many images and objects are symmetrical
objects with fold greater than 2. The alternative approach is based on using the complex moment, where both
original and rotating images have the same magnitude values of these moments, while the phase is shifted with
the rotation angle as in the following:
c0pq ¼ eiðp�qÞhcpq: ð18Þ
The idea to use the complex moments for deriving invariants was described first by Abu-Mostafa and Psaltis
[11]. Complex moments of order (p + q) for image intensity function f(x,y) are defined as
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cpq ¼
Z 1

�1

Z 1

�1
ðxþ iyÞpðx� iyÞqf ðx; yÞdxdy; ð19Þ
where i ¼
ffiffiffiffiffiffiffi
�1
p

. By using the binomial theorem, each complex moment can be expressed as a combination of
geometric moments of the same order or less as follows:
cpq ¼
Xp

k¼0

Xq

j¼0

p

k

� �
q

j

� �
ð�1Þjikþjmpþq�k�j;kþj: ð20Þ
Rotation normalization via complex moments requires c 0pq being real and positive. Icpq and Rcpq are the imag-
inary and real parts of the complex moment cpq, and the rotation angle h is evaluated as follows:
h ¼ � 1

p � q
tan�1 Icpq

Rcpq

� �
: ð21Þ
Any non-zero complex moment could be used for the rotation normalization process. It is preferable to keep
the moment order as low as possible.

3.4. Normalization to stretching

Normalization to stretching can be done by imposing an additional constraint on the second-order moment
[8]. This constraint is l 020 = l 002, the stretching factor is defined as
d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l20 þ l02 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl20 � l02Þ

2 þ 4l2
11

q
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l20l02 � l2

11

p
vuut

: ð22Þ
Moments of the normalized image to stretching are
l00pq ¼ dp�q
Xp

k¼0

Xq

j¼0

p

k

� �
q

j

� �
ð�1Þkðsin hÞqþk�jðcos hÞpþj�kl0pþq�k�j;kþj: ð23Þ
3.5. Normalization to second rotation

For symmetric objects, many moments are to equal zero. According to the inaccurate approximation of
moment values, zero-value moments may have a non-zero value. To deal with the symmetric images and
objects, Suk and Flusser [8] used selected complex moments in the normalization process, where they assumed
that the non-zero moments mean that their magnitude exceeds some threshold and the selection of this thresh-
old is based on numerical experiment. This is a big challenge and ensures the requirement to accurate compu-
tation of moment invariants.

Complex moments are calculated using Eq. (20) where the geometric moments in the right side are replaced
by l00pq from Eq. (23). The following algorithm is proposed for automatic selection of the normalization non-
zero complex moment, where Max is the maximum order of the moment.

forK = 3:Max� �

for p¼ K

2
þ 1: K;

q = Max � p;
if(cpq50)
{

Icpq = imaginary(cp q);
Rcp q= real (cp q) ;
Stop

}
endfor

endfor



Fig. 1. (a) Original non-symmetric image of Lena; (b) and (c) are the transformed images. (d) Original symmetric image of recycle logo; (e)
and (f) are the transformed images. (g) Original cross-shaped symmetric image; (h) and (i) are the transformed images. (j) Original five-
point star symmetric image; (k) and (l) are the transformed images. (m) Original flower-shaped symmetric image; (n) and (o) are the
transformed images.
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After the selection of the first non-zero complex moment, the second rotation angle / is
Table
Invaria

m20

m30

m21

m12

m40

m31

m22

m13

m04

Table
Invaria

m20

m30

m21

m12

m40

m31

m22

m13

m04
/ ¼ � 1

p � q
tan�1 Icpq

Rcpq

� �
: ð24Þ
The affine moment invariants are
mpq ¼
Xp

k¼0

Xq

j¼0

p

k

� �
q

j

� �
ð�1Þkðsin /Þqþk�jðcos /Þpþj�kl00pþq�k�j;kþj: ð25Þ
1
nce error using the proposed method

Transformed image (1) Transformed image (2) Invariance error

0.0404 0.0382 0.0022
�0.0003 0.0006 0.0009

0.0003 0.0011 0.0008
�0.0009 �0.0002 0.0007

0.0039 0.0033 0.0006
�0.0001 �0.0002 0.0003

0.0008 0.0009 0.0001
0.0001 0.0003 0.0002
0.0037 0.0032 0.0005

2
nce error using the ZOA method

Transformed image (1) Transformed image (2) Invariance error

0.1616 0.1530 0.0086
�0.0021 0.0050 0.0071

0.0025 0.0091 0.0066
�0.0074 �0.0052 0.0022

0.0627 0.0519 0.0108
�0.0020 �0.0063 0.0043

0.0120 0.0152 0.0032
0.0020 0.0044 0.0024
0.0599 0.0474 0.0125

Fig. 2. Invariance error for the non-symmetric image of Lena.
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Based on the normalization processes, the following affine moment invariants have specific values and are
independent of the image or the object:
m00 ¼ 1; m10 ¼ m01 ¼ 0; m20 ¼ m02; m11 ¼ 0; m21 ¼ �m03: ð26Þ
4. Numerical experimental

In this section, numerical experiments with different non-symmetric and symmetric images are performed.
In the first experiment, the standard gray-scale image of Lena of size 128 · 128 is used. This image is a non-
symmetric image. The original image of Lena as in Fig. 1a is transformed by two different sets of affine trans-
formations to produce the transformed images 1b and c.

Affine moment invariants of the second-, third- and fourth-order are used to test the invariance. According
to Eq. (26), the rest of the selected affine moment invariants are

Second-order:
m20;
Fig. 3. Invariance error for the symmetric image of recycle logo.

Fig. 4. Invariance error for the cross-shaped symmetric image.
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Third-order:
m30; m21; m12: ð27Þ

Fourth-order:
m40; m31; m22; m13; m04:
The set of affine moment invariants in (27) are calculated for the original and transformed images. The cal-
culated values using the proposed method are listed in Table 1, while those values of the ZOA method are
listed in Table 2. Invariance errors are plotted in Fig. 2. It is clear that the invariance error of the proposed
method is much smaller than ZOA values. The proposed method is stable and errors tend to zero as the order
of the moment invariant increases. On the other side, the ZOA method is unstable where the errors fluctuate
and tends to increase as the order of the moment invariant increases.

An image is said to be N-fold rotation symmetry with N P 1 if it repeats itself when it rotates around its
centroid by 2pj/N for all j ¼ 1; 2; . . . ;N . Based on this definition, gray-scale symmetric images with different
Fig. 5. Invariance error for the five-point star symmetric image.

Fig. 6. Invariance error for the flower-shaped symmetric image.



K.M. Hosny / Applied Mathematics and Computation 195 (2008) 762–771 771
N-fold rotation symmetry of size 128 · 128 are considered and used through the next numerical experiments.
Symmetric images of recycle logo, cross-shaped, five-point star and flower-shaped are used in the second
numerical experiment. As in the first experiment, all the original images are transformed using different groups
of affine transformations. The invariance errors are plotted in Figs. 2–6. Similar to the case of non-symmetric
image, the invariance error of the proposed method is much smaller than the corresponding one of the ZOA
method. The plotted curves ensure the stability of the proposed method against the high fluctuations produced
by the ZOA method.

5. Conclusion

This work proposes an accurate method to compute affine moment invariants for gray-scale images and
objects. This problem is an important problem of pattern recognition applications. The calculation of the
affine moment invariants for symmetric images usually leads to big ambiguities where many of these values
are equal to zero. Accurate computation and automatic selection of normalization parameters overcome this
problem. The numerical experiments are performed with symmetric as well as asymmetric images which
ensure the stability and the accuracy of the proposed method.
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