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a b s t r a c t

Orthogonal Legendre moments are used in several pattern recognition and image processing applications.
Translation and scale Legendre moment invariants were expressed as a combination of the approximate
original Legendre moments. The shifted and scaled Legendre polynomials were expressed in terms of the
original Legendre polynomials according to complicated and time-consuming algebraic relations. In this
paper, refined translation-scale Legendre moment invariants are obtained through the exact computation
of original Legendre moments which completely remove approximation. Fast straightforward computa-
tion of central Legendre moments significantly reduces the computational time. According to the tremen-
dous reduction of the computational complexity, the refined set of Legendre invariants is suitable for
large size images. The performance of descriptors is evaluated by using a set of standard images.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Legendre moments are one of the orthogonal moments that
were introduced by Teague (1980). Since this date, Legendre mo-
ments have been used in face recognition (Haddadnia et al.,
2001), line fitting (Qjidaa and Radouane, 1999), signal noise re-
moval (Kwan et al., 2004) and ECG signal compression (Kwan
and Paramesran, 2004). Like all other orthogonal moments, Legen-
dre moments can be used to represent an image with near zero
amount of information redundancy (Teh and Chin, 1988). It is well
known that the difficulty in the use of Legendre moments in many
applications is due to the required high computational complexity,
especially when a higher order of moments is used. To overcome
this problem, many efficient algorithms (Mukundan and Rama-
krishnan, 1995; Shu et al., 2000; Zhou et al., 2002; Yap and Para-
mesran, 2005; Yang et al., 2006; Hosny, 2007a,b) have been
proposed to effectively reduce the computational complexity.

The invariance of Legendre moments can be achieved through
different methods. One of them is the direct method. Direct meth-
od is based on using Legendre polynomials. Chong et al. (2004) de-
rived translation and scale Legendre moment invariants through
complicated and time-consuming system of algebraic relations.
Their method is relying on approximate computation of Legendre
moments. The main drawback of this method is the high computa-
tional demands especially with big size images and the higher or-
ll rights reserved.
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der moments. So, this method is suitable only for a set of binary
images of a very small size.

This paper proposes a refined translation-scale Legendre mo-
ment invariants by using the direct method. Numerical errors are
completely removed by using exact original Legendre moments.
Fast straightforward computation of central Legendre moments
significantly reduces the computational complexity. Aspect ratio
invariants are accurately computed by using the exact central mo-
ments. A set of gray level images with different sizes are used in
the numerical experiments. The obtained results clearly show the
efficiency of the proposed method.

The rest of the paper is organized as follows: Section 2 presents
an overview of Legendre moments. Through the next two subsec-
tions, there is a detailed description of both translation and scale
invariants. The proposed method for refined invariants is described
in Section 3. Section 4 is devoted to numerical experiments and the
analysis of the computational complexity. The conclusion is pre-
sented in Section 5.

2. Legendre moment invariants

The two-dimensional Legendre moments of order (p + q) for im-
age intensity function f(x,y) are defined as (Hosny, 2007a):

Lpq ¼
ð2pþ 1Þð2qþ 1Þ

4

Z 1

�1

Z 1

�1
PpðxÞPqðyÞf ðx; yÞdxdy; ð1Þ

The pth-order Legendre polynomial Pp(x) is defined as (Chong et al.,
2004):

PpðxÞ ¼
Xp

k¼0
p�k¼even

Bk;pxk; ð2Þ
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where x 2 [� 1,1], and the coefficient matrix Bk,p defined as:

Bk;p ¼ ð�1Þ
p�k

2ð Þ 1
2p

ðpþ kÞ!
p�k

2

� �
! pþk

2

� �
!k!
: ð3Þ

Legendre polynomial Pp(x) obeys the following recursive relation
(Spiegel, 1968):

Ppþ1ðxÞ ¼
ð2pþ 1Þ
ðpþ 1Þ xPpðxÞ �

p
ðpþ 1Þ Pp�1ðxÞ; ð4Þ

with P0(x) = 1, P1(x) = x and p > 1. The set of Legendre polynomials
Pp(x) forms a complete orthogonal basis set on the interval [�1,1].
A digital image of M � N pixels with intensity function f(xi,yj) is
mapped into the square [ � 1,1] � [ � 1,1] where, 1 6 i 6M and
1 6 j 6 N. For this discrete-space version of the image, Eq. (1) is usu-
ally approximated by using zeroth-order approximation (ZOA) as
follows (Liao and Pawlak, 1996):

eLpq ¼ kpq

XM

i¼1

XN

j¼1

PpðxiÞPqðyjÞf ðxi; yjÞ; ð5Þ

where

kpq ¼
ð2pþ 1Þð2qþ 1Þ

MN
: ð6Þ
2.1. Translation invariants of Legendre moments

The (p + q)th-order central 2D Legendre moments are defined
as:

upq ¼
ð2pþ 1Þð2qþ 1Þ

4

Z 1

�1

Z 1

�1
Ppðx� x0ÞPqðy� y0Þ

f ðx; yÞdxdy ð7Þ

where (x0,y0) is the centroid of the image and is defined as:

x0 ¼
PN

i¼1

PN
j¼1xif ðxi; yjÞPN

i¼1

PN
j¼1f ðxi; yjÞ

; y0 ¼
PN

i¼1

PN
j¼1yjf ðxi; yjÞPN

i¼1

PN
j¼1f ðxi; yjÞ

: ð8Þ

To compute these central moments (Chong et al., 2004) expressed
the translated Legendre polynomials in terms of the original Legen-
dre polynomials according to the relation:

Ppðx� x0Þ ¼
Xp

k¼0

tpðp�kÞPp�kðxÞ: ð9:1Þ

Pqðy� y0Þ ¼
Xq

m¼0

sqðq�mÞPq�mðyÞ; ð9:2Þ

where the matrices tp(p � n) and sq(q � m) are centroid-dependent de-
fined by using the following equations:
tPP ¼ 1; ð10:1Þ

tpðp�kÞ ¼
1

Bðp�kÞðp�kÞ

�
Xk

r¼1

p� kþ r

r

� �
ð�x0ÞrBpðp�kþrÞ �

Xk�1

s¼1

tpðp�sÞBðp�sÞðp�kÞ

" #
;

ð10:2Þ

sqq ¼ 1; ð10:3Þ

sqðq�mÞ ¼
1

Bðq�mÞðq�mÞ

�
Xm

d¼1

q�mþd

d

� �
ð�y0Þ

dBqðq�mþdÞ �
Xm�1

u¼1

sqðq�uÞBðq�uÞðq�mÞ

" #
;

ð10:4Þ
Subject to the conditions, k � r = even, k � s = even and k P 1;
m � d = even, m � u = even and m P 1. Using Eq. (9) in Eq. (7) yields
the following central 2D Legendre moments:

upq ¼
Xp

k¼0

Xq

m¼0

kpq

kðp�kÞðq�mÞ
tpðp�kÞsqðq�mÞeLðp�kÞðq�mÞ: ð11Þ

In case of 3D objects, Eq. (11) is generalized to the following form:

upqr ¼
Xp

k¼0

Xq

m¼0

Xr

n¼0

� kpqr

kðp�kÞðq�mÞðr�nÞ
tpðp�kÞsqðq�mÞgrðr�nÞ

eLðp�kÞðq�mÞðr�nÞ: ð12Þ

where kpqr is a straightforward extension of that is defined by Eq.
(6), and gr(r�n) is a centroid-dependent deduced by equations simi-
lar (10.1) and (10.2).

2.2. Scale invariants of Legendre moments

Non-uniform scale Legendre moments are defined as:

wpq ¼
ð2pþ 1Þð2qþ 1Þ

4

Z 1

�1

Z 1

�1
PpðaxÞPqðbyÞf ðx; yÞdxdy ð13Þ

where a and b are unequal non-zero real numbers representing the
scaling factors in x-and y-direction respectively. Chong et al. (2004)
expressed the scaled Legendre polynomials in terms of the original
Legendre polynomials as follows:Xp

n¼0

dpnPnðaxÞ ¼ ap
Xp

n¼0

dpnPnðxÞ; ð14:1Þ

Xq

d¼0

dqdPdðbyÞ ¼ bq
Xq

d¼0

dqdPdðyÞ; ð14:2Þ

where the matrix dp n is defined by using the following equations:

dPP ¼ 1; ð15:1Þ

dpn ¼
Xp�n�2

r¼0

�Bðp�rÞndpðp�rÞ

Bnn
: ð15:2Þ

Subject to the conditions, p � n � r = even,p � n = even and
p � n P 2. Using Eq. (14) in Eq. (13) yields the following scaled
Legendre moments:

wpq ¼ apþ1bqþ1
Xp

n¼0

Xq

d¼0

kpq

knd
dpndqd

eLnd: ð16Þ

The scaling factors a and b could be cancelled out. The normalized
scale invariants of Legendre moments are subsequently derived as
follows:

xpq ¼
wpqw

nþ1
00

wðpþnÞ0w0ðqþnÞ
; p; q and n ¼ 0;1;2;3; . . . : ð17Þ
3. Refined translation-scale Legendre moment invariants

In this section, a refined version of the translation-scale 2D
Legendre moments is presented. The exact central Legendre mo-
ments are simply computed by using a straightforward method
which ignores the time-consuming calculation of the Eq. (10). In
our recent work (Hosny, 2007b), a novel method was proposed
for exact and fast computation of 2D Legendre moments. This
method is adapted to compute the central 2D Legender moments
exactly without the need of original 2D Legendre moment
computation.
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A digital image of size M � N is an array of pixels. Centers of
these pixels are the points (xi, yj), where the image intensity
function is defined only for this discrete set of points
(xi,yj) 2 [�1,1] � [�1,1]. Dxi = xi+1 � xi = 2/M, Dyj = yj+1 � yj = 2/N
are sampling intervals in the x-and y-directions respectively.

The set of 2D central Legendre moment could be exactly com-
puted by:

bLpq ¼
XM

i¼1

XN

j¼1

Ipðxi � x0ÞIqðyj � y0Þf ðxi; yjÞ; ð18Þ

Eq. (18) is valid only for p P 1, and q P 1. For p = 0 and q = 0 the fol-
lowing special cases are considered:

p ¼ 0; q ¼ 0;1;2;3; . . . ;Max :

bL0q ¼
1
M

XM

i¼1

XN

j¼1

Iqðyj � y0Þf ðxi; yjÞ; ð19Þ

q ¼ 0; p ¼ 0;1;2;3; . . . ;Max :

bLp0 ¼
1
N

XM

i¼1

XN

j¼1

Ipðxi � x0Þf ðxi; yjÞ; ð20Þ

where

Ipðxi � x0Þ ¼
ð2pþ 1Þ
ð2pþ 2Þ ðUiþ1 � x0ÞPpðUiþ1 � x0Þ � Pp�1ðUiþ1 � x0Þ

�
� Ui � x0ÞPpðUi � x0Þ þ Pp�1ðUi � x0Þ
� �

; ð21Þ

Iqðyj � y0Þ ¼
ð2qþ 1Þ
ð2qþ 2Þ ðVjþ1 � y0ÞPqðVjþ1 � y0Þ � Pq�1ðVjþ1 � y0Þ

�
� Vj � y0ÞPqðVj � y0Þ þ Pq�1ðVj � y0Þ
� �

; ð22Þ

and the upper and lower limits are defined as:

Uiþ1 ¼ xi þ
Dxi

2
¼ �1þ iDx; ð23:1Þ

Ui ¼ xi �
Dxi

2
¼ �1þ ði� 1ÞDx; ð23:2Þ

Vjþ1 ¼ yj þ
Dyj

2
¼ �1þ jDy; ð23:3Þ

Vj ¼ yj �
Dyj

2
¼ �1þ ðj� 1ÞDy; ð23:4Þ

The recurrence relation (4) is used to generate Legendre polynomial
Pp(xi). In order to generate Pp(Ui+1 � x0) and Pq(Vj+1 � y0); (Ui+1 � x0)
and (Vj+1 � y0) are used instead of xi and yj. Duplicated kernel gen-
eration time could be avoided where the polynomial Pp(Ui � x0)
could be generated from Pp(Ui+1 � x0) by using the following
algorithm:

g3x (1,0) = 1.0;
g3x (1,1) = �1.0–x0;
for k = 1 to Max
g3x (1,k + 1) = (2 k + 1)/(k + 1)*(-1.0–x0)*g3x (1,k)-k/(k + 1)*
g3x (1,k-1);

endfor
for i = 2 to N

for k = 0 to Max

g3x (i,k) = g2x (i-1,k)

endfor
endfor

where g2x, g3x are matrix representations of Pp(Ui+1 � x0) and
Pp(Ui � x0) respectively, N is the image size, and Max is the maxi-
mum moment order. The polynomial Pq(Vj � y0) will be generated
from Pq(Vj+1 � y0) using the same algorithm.
Computational times required to compute exact central Legen-
dre moments by using Eq. (18) could be significantly reduced. The
two-dimensional (p + q)-order central Legendre moments can be
obtained in two steps by successive computation of the 1D qth or-
der moment for each row. This approach was successfully imple-
mented in (Hosny, 2007b,c). A fast method for exact central
Legendre moments computation will be presented. Eq. (18) will
be rewritten in a separated form as follows:

bLpq ¼
XM

i¼1

Ipðxi � x0ÞYiq; ð24:1Þ

where

Yiq ¼
XN

j¼1

Iqðyj � y0Þf ðxi; yjÞ: ð24:2Þ

Yi q in Eq. (24.2) is the qth order moment of row i. Since,

I0ðxi � x0Þ ¼ 1=M; ð24:3Þ

Substitutes Eq. (24.3) into (24.1), yields;

bL0q ¼
1
M

XM

i¼1

Yiq: ð24:4Þ

Using the exact 2D central Legendre moments bLpq defined by Eq. Eq.
(24) in the Eqs. (16) and (17) yields the refined set of translation-
scale 2D Legendre moments:

ŵpq ¼ apþ1bqþ1
Xp

n¼0

Xq

d¼0

dpndpd
bLnd; ð25:1Þ

x̂pq ¼
ŵpqw

3
00

ŵðpþ2Þ0ŵ0ðqþ2Þ
: ð25:2Þ
4. Numerical experiments and computational complexity

In this section a verification of the proposed method is pre-
sented. The computational complexity of the proposed method
for refined Legendre moment invariants and the conventional
method of Chong are analyzed. To verify the proposed method, a
gray scale image of baboon of size 256 � 256 is used. The original
image in Fig. 1a is transformed with different scaling factors as in
Fig. 1b and c. The second- and the third-order of the refined trans-
lation-scale 2D Legendre moment invariants defined by the Eq.
(25) are computed and tabulated in Table 1.

The average elapsed CPU time in seconds is evaluated for the
proposed refined method and the conventional one of Chong. The
standard gray level images showed in Fig. 2a, b, c and d are used
in this experiment. The original images are of size 512 � 512. A
set of contracted images are obtained by half size scaling. These
images are of the size 256 � 256, 128 � 128, 64 � 64 and
32 � 32. The average elapsed CPU for computing the first seven
descriptors for the different versions of standard images are shown
in Table 2. The last column of Table 2 represents the execution-
time improvement ratio (ETIR) (Hosny, 2008). This criterion is ex-
pressed by the following equation:

ETIR ¼ 1� Time1
Time2

� �
� 100; ð26Þ

where Time1 and Time2 represent the elapsed CPU time required by
the proposed and Chong’s method respectively.

4.1. Computational complexity

Computational complexity is a crucial point in all aspects of im-
age and pattern recognition. In this subsection, there is an analysis



Fig. 1. (a) The original image (b) and (c) are transformed images.

Table 1
First and second order scale invariants for the baboon image.

LMI’s Original
image

First transformed
image

Second transformed
image

x̂20 0.3554 0.3554 0.3554
x̂11 �7.9448 �7.9448 �7.9448
x̂02 0.3029 0.3029 0.3029
x̂30 0.0623 0.0623 0.0623
x̂21 0.0894 0.0894 0.0894
x̂12 0.3988 0.3988 0.3988
x̂03 0.1963 0.1963 0.1963
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of the computational complexity of both the refined and conven-
tional methods.

The computation of translation-scale Legendre invariants by
using the conventional method (Chong et al., 2004) consists
of three main steps. These steps are namely, the approximate com-
putation of Legendre moments, the computation of translated
Legendre moment invariants through the translated Legendre
polynomials and the computation of the scaled Legendre moment
invariants through the scaled Legendre polynomials.

In the first step, a set of approximate Legendre moments are
computed and stored for the use in the next step. For a digital gray
level image of size N � N, and Max is moment order, the ZOA meth-
od for approximate Legendre moment’s computation required
0.5(Max + 1)(Max + 2)N2 addition operations, and (Max + 1)-
(Max + 2)N2 multiplication operations. These moments are image-
dependent; therefore their values are computed for each image.

In the second step, central Legendre moments are calculated as
a combination of translation matrices tp(p�n) and sq, (q�m); the nor-
malization terms kp q and the approximated Legendre moments by
using Eq. (11).

Each of the translated Legendre polynomials Pp(x � x0) and
Pq(y � y0) is evaluated as a combination of the corresponding origi-
nal polynomial as in the Eqs. (9). It is clear that, the computation of



Fig. 2. Standard image of ‘‘Lena” of size 512 � 512.

Table 2
The execution-time improvement ratio.

Image size Chong’s method Proposed method ETIR (%)

512 � 512 5.1460 0.4060 92
256 � 256 0.8750 0.1560 82
128 � 128 0.2350 0.0620 74
64 � 64 0.1410 0.0470 67
32 � 32 0.093 0.0420 55
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these polynomials is image-dependent. Consequently, their values
are different from each image. Eqs. (9) required (Max � 1)(Max + 2)
additions and Max(Max � 1) multiplications plus the computa-
tional process of original Legendre polynomials by using the recur-
rence relation.

According to Eq. (10), computational process of the matrices
tp(p�n) and sq(q�m) is complicated and time-consuming. The main
problem is that, these matrices are image-dependent, which means
repetitive computation for each different image. Evaluation of
these matrices required:
Max
2
ðMax� 1Þ þ 2

XMax

t¼2

tðt � 1Þ
2

þ 2
XMax

t¼2

ðt � 1Þðt � 2Þ
2

; additions;

ð27:1Þ
Max

2
ðMaxþ 1Þ þ 4

XMax

t¼2

tðt þ 1Þ
2

þ 2
XMax

t¼2

tðt � 1Þ
2

; multiplications;

ð27:2Þ

2
XMax

t¼2

tðt þ 1Þ
2

; power functions: ð27:3Þ

In addition to these operations, computation of the Legendre coeffi-
cient matrix Bk,p defined by Eq. (5) is required. Computation of fac-
torial terms is essential.

The third step is concerned with the computation of the scaled
Legendre moment invariants. In this step, the scaled Legendre
polynomials are related to the original polynomials through the
scaling matrix dp n. Fortunately, this matrix is image-independent



Table 3
Complexity analysis of the two methods For digital image of sizeN � N and a maximum moment order equal to Max.

Chong’s method, 2004 Refined method

Multiplications ðMaxþ 1ÞðMaxþ 2ÞN2 þMaxðMax� 1Þ þ 1
2 MaxðMaxþ 1Þ þ 4

PMax
t¼2

tðtþ1Þ
2 þ 2

PMax
t¼2

tðt�1Þ
2

1
2 NMaxð2N þMax� 1Þ þ N2

Additions 1
2 ðMaxþ 1ÞðMaxþ 2ÞN2 þ ðMax� 1ÞðMaxþ 2Þ þ 1

2 MaxðMax� 1Þ þ 2
PMax

t¼2
tðt�1Þ

2 þ 2
PMax

t¼2
ðt�1Þðt�2Þ

2
1
2 ðN � 1ÞðMaxþ 1Þð2N þMaxþ 2Þ

Power functions 2
PMax

t¼2
tðtþ1Þ

2
–

Table 4
Number of addition and multiplication operations required by both methods.

Image size Max Chong’s method Proposed method

1024 � 1024 10 69,206,749 (+) 11,590,590 (+)
138,413,491 (*) 11,580,416 (*)

1024 � 1024 6 29,360,299 (+) 7,361,508 (+)
58,720,637 (*) 7,355,392 (*)

512 � 512 10 17,302,237 (+) 2,911,678 (+)
34,604,467 (*) 2,906,624 (*)

512 � 512 6 7,340,203 (+) 1,845,732 (+)
14,680,445 (*) 1,842,688 (*)

256 � 256 10 4,326,109 (+) 734,910 (+)
8,652,211 (*) 732,416 (*)

256 � 256 6 1,835,179 (+) 464,100 (+)
3,670,397 (*) 462,592 (*)
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which means that, it could be pre-computed, stored and recalled
whenever it is needed to avoid any repetitive computation. There-
fore, the computational complexity of this step is excluded from
the comparison.

The scaled Legendre moments and the aspect ratio invariants
are computed according to Eqs. (16) and (17) as a combination of
the scaling matrix dp n and the matrix dq d; the normalization terms
kp q and the approximated Legendre moments. It is easy to note
that, the computation process of the translation invariants is the
most time-consuming part of the whole computational process.

On the other side, the proposed method reduces the computa-
tional complexity tremendously through the direct computation
of the exact central Legendre moments by using an adapted meth-
od from the original exact method (Hosny, 2007b). According to Eq.
(18), the computational complexity of the exact central Legendre
moment’s computation is similar to that one for the exact Legendre
moments. Based on the detailed discussion of the computational
complexity in (Hosny, 2007b), the computational process of the ex-
act central Legendre moments required 0.5(Max + 1)(N � 1)(2N + -
Max + 2) addition operations and 0.5N Max(2N + Max � 1) + N2

multiplication operations. These operations are much less than
that of the required operations to compute only the approximate
ZOA Legendre moments. The total addition and multiplications
process required by the method of Chong and the proposed refined
method to compute central Legendre moments are summarized in
Table 3.

For more clarity, Table 4 shows the total number of only addi-
tion and multiplication operations for few standard images of dif-
ferent sizes and different orders. A quick comparison ensures the
huge difference between the computational complexities of these
two methods. It must be noted that, in the refined method, there
is no need to compute the normalization terms kp,q, the coefficient
matrix Bk,p, the power functions nor the factorial terms. This en-
sures the efficiency of the proposed method.
5. Conclusion

This work proposes a refined method to compute translation-
scale Legendre moment invariants for gray-scale images. Direct
computation of the exact central Legendre moments avoids the
complicated computation of the translation matrices. The numeri-
cal experiments show the validity of the computed values, while
the analysis of the computational complexity ensures the signifi-
cance of the proposed refined method.
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