H2 dilution effect in the Cat-CVD processes of the SiH4/NH; system

Abstract

Gas-phase diagnostics in the catalytic chemical vapor deposition processes of the SiH₄/NH₃/H₂ system were carried out to examine the effect H₂ dilution. The decomposition efficiency of NH₃ showed a sharp decrease with the introduction of a small amount of SiH₄, but this decrease was recovered by the addition H₂ when the NH, pressure was low. On the other hand, at higher NH, pressures, the decomposition efficiency showed a minor dependence on the H; partial pressure. The addition ofSiH4 to the NH; s/stem decreases the H-atom density by me order of magnitude, but this decrease is also recovered by H₂ addition. H atoms produced from H₂ must re-activate the catalyzer surfaces poisoned by SiH₄ when the NH₃ pressure is low.

I. Introduction

Catalytic chemical vapor deposition [Cat-CVD], Often called hot-wire CVD, is one of the most promising techniques for preparing thin amorphous silicon nitride (SiNx) films at low substrate temperatures using SiH₄ and NH₃ as material gases. SiNx films thus prepared can be used as gas- and water-resistant coatings for organic and inorganic devices and as interlayer insulating films for microelectronic devices. One of the problems in this technique has been the low decomposition efficiency of NH₃ in the presence of SiH₄.

In the absence of SiH₄, NH₃ can be decomposed to NH; and H with a decomposition efficiency of more than 50% . However, the decomposition efficiency decreases sharply upon the introduction of a small amount of SiH₄. This decrease has been attributed to the poisoning of the catalyzer surfaces by SiH₄ Separating the catalyzers, one to decompose NH, and another to decompose SiH₄ is not easy because the diffusional rate of Sill, is large under low pressure conditions, such as those employed in conventional low-pressure CVD processes, and the prevention of catalyzer poisoning is difficult.

Recently, it has been found that the addition of H₂ improves not only the

decomposition efficiency of NH; in the presence of Sill. but also the SiNx film quality.For example, Malian et al. have shown that the content of N atoms in the films increases significantly with H_2 dilution for a given NH₃/SiH₄ gas flow ratio. H_2 dilution also causes a reduction in the amount of N-H bonding in SiN_x films. Wang et al. have demonstrated that near perfect conformal surface coverage can be obtained on a 100-nm-scale object [6]. In the present work. a systematic study was carried out to determine the catalytic decomposition efficiency of NH₃ in the SiH₄/NH₃/H₂ system. Such information is essential for optimizing of the deposition conditions to prepare SiNx contiarmal films. The absolute H-atom densities were also measured under several conditions.