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Abstract 

The immobilized cells of five bacterial cultures on different carriers were investigated for the production of cyclodextrin 
glucosyltransferase (CGTase). The entrapped cells of Bacillus amyloliquefaciens in calcium alginate showed the highest enzyme activity 
(70.8 U ml-1

). The enzyme production with respect to alginate concentration, bead diameter, and maximal cell loading in the 
immobilization matrix was optimized. In repeated batch fermentation, the immobilized cells retained their ability to produce CGTase 
consistently over 14 cycles and the activity remain between 70 and 88 U ml- 1 throughout the cycles. Continuous culture was investigated in 
packed-bed and fluidized-bed reactors. In packed-bed reactor, maximal productivity (23 KU I-I h - I) with enzyme concentration of 
48 U ml- I and specific productivity of 141.8 U g wet celIs- 1 h- I was attained at a dilution of 0.48 h- 1

. Continuous production in fluidized­
bed reactor showed maximal productivity (30.4 KU I-I h- I

) with enzyme concentration of 53.0 U ml- I and specific productivity of 
230.9 U g wet celIs- 1 h- I at a relatively high dilution rate of 0.57 h- 1

. © 2000 Elsevier Science S.A. All rights reserved. 
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1. Introduction 

Bacterial cyclodextrin glucosyltransferase (CGTase) (EC 
2.4.1.19) represent one of the most important groups of 
microbial amylolytic enzymes [1]. They are widely known 
to catalyze the formation of cyclic, non-reducing mal to­
oligosaccharides from starch consisting of six (a-cyclodex­
trin, a-CD), seven (~-CD), and eight (y-CD) 1,4-a-D-linked 
glucopyranose residues. These cyclic products can form 
versatile inclusion complexes with many organic and inor­
ganic compounds, of which property is of paramount impor­
tance, especially concerning the widespread applications of 
CDs in the pharmaceutical, food, and chemical industry 
[2,3]. 

Immobilized cell systems have been applied for many 
biochemical processes and have been reviewed several times 
[4,5]. The application of the immobilized whole cells for 
biochemical processes offers many advantages, such as the 
ability to separate cell mass from the bulk liquid for possible 
reuse, facilitating continuous operation over a prolonged 
period and enhanced reactor productivity. 

The production of amylolytic enzymes by immobilized 
cells have been reported by many investigators [6-9] How­
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ever, such reports on the production of CGTase by immo­
bilized cells are rather low [10]. 

This paper reports the experimental results for CGTase 
production by immobilized Bacillus amyloliquefaciens. We 
have also evaluated the using of the immobilized cells of 
Bacillus amyloliquefaciens for CGTase production in 
repeated batch and continuous culture with respect to the 
yield, productivity, and long-time operational stability. 

2. Materials and methods 

2.1. Microorganisms 

The bacterial strains used in the present work were 
obtained from the Center of Cultures of the National 
Research Center, Cairo, Egypt. They were maintained on 
potato dextrose agar slants at 4°C. 

2.2. Culture media and growth conditions 

The medium used for the cell biomass production for the 
cell immobilization was composed of (g 1-1) glucose, 10; 
starch, 10; yeast extract, 3.0; peptone, 6.0; meat extract, 1.5. 
The pH was adjusted to 6.5 prior to the sterilization. The 
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medium was inoculated from 24 h old slants and was grown 
at 37°C. The cultures were grown in 250 ml Erlenmeyer 
flasks each containing 50 ml of sterile medium. Aliquots 
were drawn periodically to assess the growth. The cells 
obtained from the logarithmic phase of growth were used for 
the immobilization experiments. 

Potato dextrose (PO) medium was used for enzyme 
production in both batch and continuous cultures. The 
medium had the following composition (g 1-1): potato 
slices, 400; glucose, 20. The pH was adjusted to 6.5. 

2.3. Immobilization procedures 

All the immobilization processes were performed under 
aseptic conditions. In separate experiments. the cell pellets 
obtained from each culture (in the logarithmic phase of 
growth) were collected by centrifugation (5000 rpm, 
15 min) in a refrigerated centrifuge. Then. the wet cell 
pellets were suspended in 0.85% sterile saline and used 
for the cell immobilization experiments. 

2.3.1. Immobilization in Ca-alginate 
Unless otherwise stated, the wet cell pellets obtained from 

50 ml culture of each organism were mixed with 10 ml of 
sodium alginate solution (BOH, 30105), in separate experi­
ments. The final sodium alginate concentration was kept at 
4% (w/v). The beads (the mean diameter 3 mm) were 
obtained by dropping mixtures into sterile CaCl2 

(0.05 M). The beads obtained from 10 ml gel were used 
for inoculation of 50 ml of the PD medium. 

2.3.2. Immobilization in agar 
The wet cell pellets obtained from 50 ml culture of each 

organism were mixed with 10 ml of 3% (w/v) agar solution 
at 45°C. The mixture was quickly cooled to 4°C, cut into 
2 mm x 2 mm x 2 mm fragments, and transferred to 50 ml 
of PO medium [11]. 

2.3.3. Immobilization in polyacrylamide 
The wet cell pellets obtained from 50 ml culture of each 

organism were mixed with 10 ml of 5% (w/v) acrylamide 
solution with 3% (w/w) cross-linker (N,N-methylene bisa­
crylamide) concentration [12]. The gel obtained was cut into 
2 mm x 2 mm x 2 mm fragments and transferred to 50 ml 
of PO medium. 

2.4. Batch experiments 

Unless otherwise indicated, the batch experiments were 
performed in 250 ml Erlenmeyer flasks each containing 
50 ml of PO medium. The flasks were inoculated with the 
beads obtained from 10 ml gel with the calculated amounts 
of the immobilized cells. Parallel experiments were carried 
out with equal amounts of free cells. The cultures were 
incubated for 48 h in a rotary shaker (120 rpm) at 37°C. All 
the experiments were carried out in triplicates. 

2.5. Repeated batch experiments 

This was done in 250 ml Erlenmeyer flasks each contain­
ing 50 ml of PO medium. Each flask was inoculated with the 
beads obtained from 10 ml alginate gel comprising a cell 
loading of 1.08 g wet cells 50 ml- 1 culture. Fermentation 
was conducted at 37°C for 24 h under shaking conditions 
(120 rpm). At the end of each run, the gel particles were 
filtered and washed with 25 ml of 0.05 M CaCl2 and dis­
tilled water and transferred to 50 ml of fresh medium. All 
the experiments were carried out in triplicates. 

2.6. Continuous fermentation 

2.6.1. In packed-bed reactor 
A glass column 30 cm in length and 1.5 cm in diameter 

was used for continuous production of CGTase The bior­
eactor was incubated at 30°C. The column was packed with 
56 g of cell-immobilized beads (average diameter 3 mm) 
comprising about 20.6 g of wet weight cells (viable cell 
count 7.13 x ]09 per g wet cells). The void volume was 
125 m!. The medium was fed through the bottom by a 
peristaltic pump with a flow rate regulator. Aeration was 
provided by means of an air filter. The air flow was 
optimized at 0.3 v/v/min. The effluent was collected in a 
holding tank. The schematic representation of the bioreactor 
is illustrated in Fig. 1. 

12 
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Fig. 1. Schematic diagram of the continuous fermentation system. (I) 

Bioreactor with the immobilized beads, (2) medium feed reservoir, (3) 
peristaltic pump, (4) flow rate regulator, (5) air pump. (6) rotameter, (7) air 
filter. (8) product collection vessel, (9) outlet air filter (10) medium inlet, 
(II) air inlet, (12) product outlet. (13) air outlet. 

2 



3 M.A. Abdel-Naby et aUBiochemical Engineering Journal 5 (2000) 1-9 

2.6.2. In fluidized-bed bioreactor 
The bioreactor is a glass column of 2.0 em diameter and 

32 em long. The bioreactor was incubated at 30°C. The 
reactor was filled with 115 g of freshly prepared immobi­
lized beads comprising 32.34 g wet weight cells (viable cell 
count 7.13 x 109 per g wet cells). The fresh medium was 
introduced from the bottom of the reactor. Air was admitted 
in through a rotameter and sterile air filter from the bottom 
of the reactor. The air flow was optimized at 0.33 v/v/min, 
which was sufficient to fluidize the bed. The effluent from 
the reactor was collected in a holding tank. The schematic 
representation of the bioreactor is similar to that of packed­
bed which illustrated in Fig. 1. 

2.7. Analytical methods 

Optical density of cell growth was measured using spec­
trophotometer (Spectronic 2000, Bausch and Lomb) at 
620 nm. Biomass was determined gravimetrically in the 
cell pellets after removing the culture supernatants by 
centrifugation. Viable-cell number was counted on 1.5% 
nutrient agar plates. Reducing sugars were determined using 
the method of Somogyi [13]. Protein was estimated by the 
method of Lowry et al [14]. 

2.8. Enzyme assays 

CGTase was determined by the method reported by 
Nogrady et al [15]. The reaction mixture containing 
40 mg of water-soluble starch (Sigma) in 1.0 ml 50 mM 
phosphate buffer (PH 6.5) and 0.1 ml of the enzyme solution 

Table I 
Production of CGTsae enzymes by free and immobilized bacterial cultures 

Bacterial strain Matrix of Biomass loaded 
immobilization (g wet cells 50 ml 

culture-I) 

Bacillus amyloliquefaciens 312 free cells 0.77 
agar 0.77 
Ca-alginate 0.77 
polyacrylamide 0.77 

Bacillus macerans 314 free cells 0.92 
agar 0.92 
Ca-alginate 0.92 
polyacrylamide 0.92 

Bacillus macerans 3185 free cells 0.95 
agar 0.95 
Ca-alginate 0.95 
polyacrylamide 0.95 

Bacillus macerans 3168 free cells 1.23 
agar 1.23 
Ca-alginate 1.23 
polyacrylamide 1.23 

Bacil/us megalerium NRC 4 free cells 0.9 
agar 0.9 
Ca-a1ginate 0.9 
polyacrylamide 0.9 

was incubated at 60°C for 20 min. The reaction was stopped 
by the addition of 3.5 ml of 30 mM NaOH solution, and then 
0.5 ml 0.02% (w/v) phenolphthalein solution prepared in 
5 mM Na2C03 was added. After incubating for 15 min at 
room temperature, the abasorbance at 550 nm was read. One 
unit of the enzyme activity (U) is defined as the amount of 
the enzyme forming one I-lg of CD per min under the assay 
conditions. 

Amylase activity was determined according to the Berg­
mann et aL [16] by estimating the released reducing sugars 
from 1.0% saline starch in 0.2 M phosphate buffer (pH 6.5). 
One unit of the enzyme activity (U) is defined as the amount 
of the enzyme forming Il-lmol of reducing sugars (as 
glucose) per min under the assay conditions. 

3. Results and discussion 

3.1. Screening of immobilized microorganisms suitable for 
CGTase production 

The suitability for production of CGTase activity by the 
immobilized cells of five bacterial cultures in different 
immobilization matrices was investigated in submerged 
culture. In another set of experiments, the same amount 
offree cells from each culture was inoculated along with the 
same amount of the immobilized cells. The results (Table I) 
indicated that, in all cases the activity of the immobilized 
cells was lower than the corresponding amount of free cells. 
The effectiveness factor of the immobilized cells, which is 
the ratio of the enzyme activity of the immobilized cells to 

Protein CGTase Specific Effectiveness 
content 
(mg ml- I) 

activity 
(U ml- I) 

productivity 
(U g wet cells- I h­ ' ) 

factor" 

3.56 88.50 119.70 
1.37 67.06 90.70 0.74 
1.63 70.80 95.78 0.80 
1.72 67.80 91.72 0.76 
3.29 79.38 89.87 
2.02 60.74 68.77 0.50 
1.16 63.76 72.19 0.77 
1.71 67.75 76.71 0.77 
4.40 86.49 94.83 
2.37 60.74 66.60 0.44 
1.41 65.75 72.10 0.76 
1.82 63.21 69.30 0.73 
3.75 78.40 66.39 
1.98 61.32 51.93 0.56 
0.87 60.56 51.28 0.77 
1.69 60.19 50.97 0.76 
3.05 78.61 91.00 
1.88 55.27 63.97 0.42 
1.78 58.70 67.94 0.74 
1.90 59.23 68.55 0.75 

---... 

" The ratio of the enzyme activity of the immobilized cells to that of the same amount of free cells. 
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that of the same amount of free cells under identical 
conditions, was in the order of 0.5-D.8. These values are 
similar to those reported elsewhere for other immobilized 
bacterial amylases [6,7]. The effectiveness factor of the 
immobilized cells would always be less than one because 
the immobilized cells represent a heterogeneous catalysis 
fermentation in which the activity, or rather synthesis, of 
primary or secondary metabolites is dependent upon the 
external and internal mass transport and adequate oxygen 
supply [7]. 

Of all preparations, the cells of Bacillus amyloliquefa­
ciens entrapped in Ca-alginate showed the highest CGTase 
activity (70.8 U ml- I

) and the highest specific productivity 
(95.78 U g wet cells h- l 

). This strain produces CGTase that 
forms ~-CD. Thus, it was used throughout this study. 

3.2. Optimum conditions for immobilization of Bacillus 
amyloliquefaciens in Ca-alginate 

Different concentrations of sodium alginate (2-5%, w/v) 
were investigated for the immobilization process. In all 
cases, a constant amount of cells was used (equivalent to 
0.77 g wet cell pellets per 10 ml gel, contained viable cell 
count of 5.5 x 1010 cells). Inoculation of 50 ml PD medium 
was performed with the beads resulted from 10 ml Na­
alginate solution. The results recorded in Table 2 indicated 
that beads prepared from 2% (w/v) alginate concentration 
were much softer and showed the highest number of leaked 
cells (11.3%) and therefore, they were excluded. On the 
other hand the enzyme yield of the beads made of 5% (w/v) 
was 84.56% of that recorded for the beads prepared from 3% 
(w/v) alginate concentration. This is most likely because the 
resulting beads had a lower diffusion efficiency. Maximal 

enzyme yield (78.4 U ml- I
) was obtained at 3% (w/v) 

alginate concentration. This concentration was recom­
mended for the production of a-amylase [7] and CGTase 
[10] by immobilized bacterial cells. 

Using the same conditions from the previous experiment, 
the effect of bead diameter was investigated using 3% (w/v) 
alginate concentration. The alginate solution was made into 
beads of different diameters (2-6 mm). The results 
(Table 3) indicated that the beads of smaller diameter 
(2 mm) showed the highest number of leaked cells 
(11.3%). In fact, the bacterial cells grown preferentially 
near the bead surface, are continuously released out in the 
culture medium. It is worthy to note that the surface area of 
the beads resulted from certain volume of alginate gel 
increased with the decrease of the beads diameter. There­
fore, the number of the leaked cells increased with the 
decrease of beads diameter. Similar observations were 
previously reported for the immobilized cells of Lactococ­
cus lactis in alginate beads [18]. On the other hand, the 
beads of diameter higher than 5-6 mm showed a lower 
CGTase yield (63.28 U rnI- 1

). The highest enzyme yield 
(78.18 U mr- I

) was obtained with bead diameter of 3­
4mm. 

The effect of cell loading on CGTase production was 
investigated. In separate experiments, 10 rnl of alginate 
solutions (3%, w/v) with different cell contents (0.77­
1.4 g wet cell pellets) was made into beads (3-4 mm in 
diameter) and inoculated into 50 ml of PD medium. The 
results (Table 4) indicated that there was a marginal 
increase in the activity with the increase of cell loading 
up to 1.08 g wet cell pellets, whereby maximal enzyme yield 
was attained (109 U ml- I 

). Further increase of cell loading, 
however, did not significantly increase the enzyme yield. On 

Table 2 
Effect of alginate concentration on the production of CGTase by the immobilize cells of B. amyloliquefaciens 

..--~. 

Alginate Protein content CGTase Amylase Leaked Specific CGTase 
concentration of culture filtrate activity activity cells productivity 
(%) (mg ml- 1) (Vml- 1) (V ml- I

) (%)3 (U g wet cells-I h- 1) 
.--~.. 

2 1.94 79.8 8.4 11.0 103.63 
3 1.72 78.4 5.6 3.5 101.80 
4 1.37 70.8 4.5 2.0 91.94 
5 0.84 66.3 3.85 2.0 86.10 

.---.-----.---­
a This was calculated from the original concentration of cells in the beads resulted from 10 ml alginate gel (0.77 g wet cells, 5.5 x 1010 cells). 

Table 3 
Effect of bead diameter on the productivity of CGTase by the immobilized cells of B. amyloliquefaciens 

Bead Protein content CGTase Amylase Leaked Specific CGTase 
diameter of culture filtrate activity activity cells productivity 
(mm) (mg ml- I) (Vml- 1) (V ml- 1) (%)" (V g wet cells- 1 h-') 

2 2.10 80.00 6.91 11.3 103.90 
3-4 1.72 78.18 5.60 3.60 101.53 
5--6 1.33 63.28 4.37 2.50 82.18 
--~----..------­

" This was calculated from the original concentration of cells in the beads. 
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Table 4 
Effect of cell loading on !be production of CGTase by the immobilized cells of B. amyloliquefaciens 

Biomass concentration Protein content of culture 
filtrate (mg ml- I) 

CGTase activity 
(U ml- I) 

Amylase activity 
(Umg -I) 

Specific CGTase productivity 
(U g wet cells-I h -I) 

(g wet cells 10 ml Total viable 
of alginate gel-I) cell count 

0.77 5.5 x 1010 1.72 78.46 5.50 101.90 
0.92 6.6 x 1010 1.77 92.30 6.20 100.32 
1.08 7.7 x 1010 1.90 109.0 6.94 100.0 
1.23 8.8 x lOw 2.10 110.0 7.24 81.30 
1.40 9.9 x 1010 2.50 109.0 7.70 77.85 

the other hand, the specific CGTase productivity was con­
stant at a level of 10l.9-100 U g wet cells -I h-I up to a cell 
loading of l.08 g wet cells 10 ml alginate gel- 1 but 
decreased to 81 % of this activity at a loading level of 
1.23 g wet cells 10 ml gel- I (Table 4). Similar results were 
reported for other entrapped cells in Ca-alginate [7,11]. 
Cheetham et al. [11] reported that at very high cell con­
centration, the beads were actually less active because the 
porous structure of the beads was lost. 

3.3. Culture conditions for maximization of CGTase 
production by Bacillus amyloliquefaciens 

Using the optimum conditions reached from the previous 
experiments (3%,w/v, alginate concentration, 3-4 mm bead 
diameter, and cell loading of 1.08 g wet cell pellets per 
10 ml gel), the effect of some cultural conditions for 
CGTase production was investigated. The effect of pH of 
the culture medium was investigated for the production of 
CGTase over pH range 5.0-7.5. Maximal enzyme activity 
(108 U ml- 1

) was attained at pH 6.5. This results are similar 
to that reported by Lee et al. [17]. 

On equivalent carbon basis, the glucose in the PD med­
ium was substituted with different carbon sources (i.e., 
galactose, maltose, fructose, lactose, sucrose, sorbose and 
xylose). The results (Table 5) indicated that CGTase 

Table 5 
Influence of various sugars on CGTase biosynthesis 

occurred with all the investigated sugars and the highest 
activity was obtained with glucose (110 U ml- I 

). Similar 
observations were explicitly reported by Ismail et al. [20] 
and Nogrady et al. [15] using the free cells of B. macerans. 
Jamunaet aL [10] reported that the formation ofCGTasedid 
not require the presence of specific inducer, since it occurred 
in absence of starch and starch cleavage products, and in the 
presence of glucose and related sugar moieties. The effect of 
glucose concentration was also investigated and the results 
indicated that maximal CGTase activity was attained at 2% 
(w/v). 

On equivalent nitrogen basis (1.0 g N I-I), addition of 
organic nitrogen sources (i.e., casein, peptone, yeast extract, 
soybean, meat extract, milk whey) to the culture medium 
(Table 6) did not improve the enzyme yield (78­
99.0 U ml- I 

). Allison and Macfarlane [19] reported on 
the fall in the enzyme yield with the use of some organic 
complex nitrogen sources. They referred that to the feed 
back inhibition mechanism resulting form the presence of 
certain amino acids repressed the enzyme biosynthesis. On 
the other hand the use of inorganic nitrogen source (i.e., 
(NH4hS04, NaN03) showed the lowest levels of CGTase 
yield (56.9-70.2 U ml- I

). 

Addition of wheat bran (5-10 g 1-1, w/v) or its extract 
had no effect on the enzyme yield (108 U mr- I

). These 
results are in contradiction to those reported by Jamuna et al. 

Sugars Final pH of the Protein content CGTase activity Amylase activity 
culture medium (mg ml- I

) (Uml- I ) (U ml- I) 

None 6.29 1.04 53.35 1.66 
Glucose (%, w/v) 
0.5 7.37 1.16 87.70 2.25 
1.0 6.85 1.44 96.70 2.92 
1.5 6.59 1.55 102.20 4.33 
2.0 6.31 1.63 110.13 5.61 
2.5 6.17 1.69 106.30 8.97 
Galactose 5.04 1.20 83.90 3.82 
Fructose 5.07 1.68 64.44 3.73 
Maltose 5.41 1.23 63.00 4.77 
Lactose 5.70 1.62 67.50 4.93 
Sucrose 5.73 1.38 65.50 3.97 
Sorbose 5.76 1.40 87.40 3.65 
Xylose 5.90 1.54 80.43 2.88 
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Table 6 
Influences of various nitrogen sources on CGTase biosynthesis 

Nitrogen source added" Final pH of Protein content of CGTase activity Amylase activity 
the culture culture filtrate (mg mrl) (UrnI' I) (U ml- 1) 

None 6.31 
Casein 7.86 

Peptone 3.51 
Yeast extract 8.21 
Soybean 7.94 
Meat extract 7.70 

Milk whey 7.28 
NaNO, 7.51 

(NH4)2S04 7.72 

1.63 
3.25 
3.51 
4.13 
3.85 
4.70 
3.51 
3.80 
3.18 

110.13 
96.09 
99.80 
90.26 
89.40 
78.00 
87.27 
70.38 
56.9 

5.61 
3.77 
2.05 
4.42 
3.00 
4.39 
4.10 
4.00 
4.50 

a Final nitrogen concentration 1.0 g Nil. 

[10] concerning on the stimulating effect of wheat bran for 
CGTase biosynthesis. The aforenamed author attributed the 
positive action of wheat bran for CGTase formation to the 
presence of other trace essential amino acids and vitamins. 

The addition of CoCl2• ZnS04 and MgCh (0.1, w/v) to 
the culture medium showed about 20, 27, and 5% drop on 
CGTase activity, respectively. On the other hand, addition of 
CaCI2 at 0.15% (w/v) showed about 9% increase of enzyme 
yield (119 U ml- I 

). Higher level (0.4%, w/v), however, 
showed about 11.8% drop in the enzyme activity. The 
positive effect of Ca2+ ions may be due to the stabilizing 
effect of the alginate beads. These results do coincide with 
those reported by Ismail et al. [20] and Jamuna et al. [10] for 
CGTase production by free and immobilized cells, respec­
tively. 

3.4. Repeated batch operation with immobilized cells 

The activity of immobilized Bacillus amyloliquefaciens 
cells for the production of CGTase continuously was 
explored by using the cell-immobilized beads, respectively, 
for several batches. The medium was replaced every 24 h 
and the beads were washed thoroughly with 0.05 M CaCh, 
and distilled water at the end of each cycle before reuse. The 
results (Fig. 2) show the activity of 14 cycles. The activity 

100 

g 80 
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~. 60 
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u 
=: ., -10 
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::: 20:;,J 
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Cycle number 

Fig. 2. Repeated use of the immobilized cells of Bacillus amyloliquefa­
dens for CGTase production. 

of the immobilized cells remain between 69.4 and 
88.8 U mr'! throughout the cycles. These results are similar 
to those reported by Jamuna and Ramakrishna [7] for the 
production of extracellular a-amylase by the immobilized 
cells of Bacillus sp. in repeated batch fermentation. On the 
other hand, the enzyme activity of alginate-entrapped cells 
of Bacillus amyloliquefaciens (69.4-88.8 U mr- I) was 
higher than those reported by Jamuna et al. [10] for Bacillus 
cereus for CGTase production in repeated batch fermenta­
tion (30-40 U ml- I). Furthermore, the specific CGTase 
biosynthesis in terms of U g wet cells-I h- I of B. amylo­
liquefaciens was about 133.8-171.3 (U g wet cells- J h- I 

), 

which is about 64.7-71.5% higher than those reported by 
Jamuna et al. [10] for Bacillus cereus (78-104 U g wet 
cells-I h-- 1). 

3.5. Continuous production of CGTase in packed-bed 
bioreactor 

The continuous production of CGTase was accomplished 
in a packed-bed reactor (Fig. I), using the optimized med­
ium. The fermentation was carried out in a batch operation, 
initially for 24 h, then continuous operation was started. The 
flow rate was varied between 6.25 and 90.0 ml h -I. The 
dilution rate was found to be in the range of 0.05-0.72 h -I, 
corresponding to 20-1.39 h residence time (inverse of the 
dilution rate). The aeration rate was investigated and max­
imal enzyme yield was obtained at the rate of 0.33 (v/vl 
min). Higher rates, however, did not significantly affect the 
enzyme yield. The system was considered to be in a steady 
state only, after at least five replacement volumes (residence 
times). The samples were collected at each dilution rate at 
the steady state conditions. The results of CGTase activity, 
and reactor productivity at different dilution rates are shown 
in Fig. 3. After scanning the whole range of the dilution rate, 
it was noticed that maximum activity occurred at low 
dilution rate (or higher residence time) and gradually 
decreased as the dilution rate increased. This trend was 
expected, since the contact time between the medium and 
the immobilized cells decreased as the dilution rate 
increased. Maximal enzyme activity in the effluent 
(92.1 U ml- 1

) was attained at a dilution rate of 

http:0.05-0.72
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Fig. 3. Enzyme activity and CGTase productivity at different dilution 
rates in a packed-bed reactor. 

0.052 h-I. The enzyme productivity (calculated by multi­
plying the dilution rate x enzyme activity) which represents 
that efficiency of the system was increased with increasing 
of the dilution rate up to 0.48 h -I and decreased thereafter. 
This is due to the fact that the total amount of the enzyme 
output from the reactor increases although the activity is 
lower, because of the high flow rate. This implies that in 
operating a continuous reactor, there may be an optimum 
dilution rate at which maximum enzyme productivity was 
attained. In general, a similar behavior was reported for 
continuous production of a-amylase [7] and isomalto-oli­
gosaccharides [21] by immobilized cells in packed-bed 
reactors. Maximal productivity (23 KU rl h- I

) with 
enzyme concentration of 48 ml- l and specific productivity 
of 141.8 U g wet cells -I h - 1 was attained at a dilution of 
0.48 h· l . In the initial 144 h the reactor was operated with 
different dilution rates and then switched on at the dilution 
rate which showed maximal productivity (0.48 h- I 

). The 
reactor was able to keep producing CGTase activity, in 
the effluent of 48 U ml- I

, for about 10 days at the same 
level. After that, the activity started to decline gradually 
to the level of 20 U ml- 1 after 18 days of the operation 
(Fig. 4). 

3.6. Continuous production of CGTase in fluidized-bed 
bioreactor 

Continuous production of CGTase from Bacillus amylo­
Iiquefaciens was also studied in fluidized bed reactor. The 
fermentation was carried out in a batch operation, initially 
for 24 h, then the fresh medium was fed into the reactor at 
different dilution rates (0.1-0.7 h -I, representing 10-1.42 h 
residence time). The aeration rate was optimized at 0.33 (vI 
v h -I), which was sufficient to fluidize the bed. Like the 
packed-bed reactor, the system was considered to be in a 
steady state only, after at least five residence times and the 
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Fig. 4. Continuous synthesis of CGTase by immobilized cells of Bacillus 
amyloliquefaciens in a packed-bed reactor. The reactor was operated at 
different dilution rates for initial 144 h. The numbers 1-6 denote the 
changes on the dilution rates (0). 1-0 = 0.1, 2-0 = 0.24. 3-0 = 0.4, 
4-0 = 0.56.5-0 = 0.72 and 6-0 = 0.48. 

samples were collected at each dilution rate at the steady 
state conditions. The enzyme activity at different dilution 
rates is plotted in Fig. 5. It can be seen that the reduction in 
the enzyme activity was found to be 57%, when the resi­
dence time was lowered from 10 to 1.42 h. Maximal enzyme 
productivity (30.44 U ml- I h- I

) with enzyme concentra­
tion of 53.4 U ml- I was attained at the dilution rate of 
0.57 h-I. This value is about 32% higher than that obtained 
for the packed-bed reactor. The increase of enzyme pro­
ductivity in fluidized bed reactor may be ascribed to the 
reduction of diffusional limitation by the effect of agitation 
in the fluidized bed. However, this mechanical agitation 
normally reduce the operational stability of the alginate 
beads and consequently prohibited further use [22]. In the 
initial 144 h the reactor was operated with different dilution 
rates and then switched on at the dilution rate which showed 
maximal productivity (0.57 h -I). The reactor was able to 
keep producing nearly CGTase activity of 53 U ml- 1 at a 
dilution rate of 0.57 h -I for 10 days. After that. the activity 
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Fig. 5. Enzyme activity and CGTase prnductivity at different dilution 
rates in a fluidized-bed reactor. 
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Table 7 
Comparison of CGTase activity and productivity in various systems 

----~ 

System 	 Maximal enzyme Productivity of the Specific productivity Relative productivity 
concentration (KU 1- I) system (KU I-I h-I) (U g wet cells-I h- I ) (fold) 

Free cells 
Batch" 88.5 1.85 119.72 

Immobilized cells 
Batch (basal medium)b 70.8 1.47 94.7 0.8 
Batch (at the optimized conditions)' lIO 2.3 106.5 1.24 
Repeated batchd 75.0 3.13 156.25 1.67 
Continuous (packed-bed)e 48.0 23.04 141.87 12.45 
Continuous (fluidized-bed)f 53.4 30.44 230.90 16.45 

a Data from Table 1. 
b Data from Table l. 
, 3% Na-alginate, 3 mm bead diameter, and 1.08 g wet cells 10 ml alginate ger I. 
d Average of 14 cycle. 
e At the dilution rate of 0.48 h -I, which showed the maximal productivity. 
f At the dilution rate of 0.57 h -I, which showed the maximal productivity. 

started to decline gradually over extended periods of times 
to reach 35 U ml- I after 20 days of the operation (Fig. 6). 
Maximal specific CGTase productivity of immobilized cells 
of Bacillus amyloliquefaciens (230.9 U g wet cells- 1 h- 1

) 

which attained at dilution rate of 0.57 h -I is favorably 
comparable to that reported for CGTase production from 
Bacillus cereus (220 U g wet cells-' h-') in fluidized-bed 
reactor [10]. 

3.7. Comparison of CGTase activity and productivity in 
various systems 

The results in Table 7 compares the activity and produc­
tivity of free and immobilized cells of Bacillus amylolique­
faciens in batch and continuous cultures. In terms ofenzyme 
activity, the highest was achieved in free cells which is 7.5, 
12.5, 65, and 85% higher than the immobilized cells in, 
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Fig. 6. Continuous synthesis of CGTase by immobilized cells of Bacillus 
amyloliquefaciens in a fluidized-bed reactor. The reactor was operated at 
different dilution rates for initial 144 h. The numbers 1-9 denote the 
changes on the dilution rates (D). I-D = 0.1. 2-D = 0.2. 3-D 0.3,4­
D == 0.4. 5-D == 0.5, 6-D 0.57,7·D 0.62. 8-D 0.7 and 9-D 0.57. 

repeated batch, batch, continuous in fluidized bed, and 
continuous in packed bed, respectively. On the other hand, 
in tenns of productivity, the immobilized beads under 
continuous operation in fluidized bed resulted in 
30.44 KU 1-1 h- I

, which is 132-16.45 times higher than 
the other systems. In addition, the long term viability and 
continued metabolic activity is one of the most important 
advantages when working with the immobilized system, this 
is particularly so with the continuous fermentation. Rych­
tera et al. [23] reported that the long viability of the 
immobilized cells may be due to the different composition 
of proteins, nucleic acids, and inorganic substances, in 
comparison to the free cells, but definite evidence in this 
regard is lacking. 
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