

Composite Structures 59 (2003) 369-383

COMPOSITE STRUCTURES

www.elsevier.com/locate/compstruct

# Minimization of the dynamic response of composite laminated doubly curved shells using design and control optimization

M.E. Fares \*, Y.G. Youssif, A.E. Alamir

Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt

#### Abstract

A design control optimization approach is used to determine optimal levels of ply thickness, fiber orientation angle and closedloop control force for composite laminated doubly curved shells. The optimization objective is the minimization of the dynamic response of a shell subject to constraints on the thickness and control energy. A higher-order shell theory is used to formulate the control objective for various cases of boundary conditions. The dynamic response is expressed as the sum of the total elastic energy of the shell and a penalty functional of a closed-loop control force. Comparative examples are presented for symmetric (or antisymmetric) spherical and cylindrical shells with various cases of boundary conditions. The advantages of the present control optimization over some design and control approaches are examined. The effect of number of layers, aspect ratio and orthotropy ratio on the control process is demonstrated. The discrepancy between optimal results obtained using the classical, first-order and higherorder shell theories is studied.

© 2003 Elsevier Science Ltd. All rights reserved.

Keywords: Structures design and control; Closed-loop control force; Optimal layer thickness; Fiber orientation angle; Higher-order shell theory

#### 1. Introduction

An important area of application of fiber composite structures occurs in the field of aerospace engineering and, in particular, in the construction of large space structures. Material tailoring and active control are effective means of improving the performance of these structures because of the adaptability of composite materials to a given design situation. For aerospace structures, weight considerations invariably lead to highly flexible structures with low natural damping. However, serviceability and safety requirements restrict the allowable limits of the dynamic response to external disturbances to specified values. So, optimization is a necessary part of the design process for these structures.

Design optimization of composite laminated structures is concerned with the best use of the tailoring capabilities of fiber-reinforced laminated beams, plates and shells to minimize (or maximize) a given design objective. The vibration damping involves the damping out of the excessive vibrations by means of active structural control. These two subjects were treated in literature separately [1–4], while, in more recent studies, they were treated as an integrated approach for simultaneous design and control of these structures using unified formulation [5–8]. Most recent studies on these subjects may be found in the works [9–14].

Many studies indicate that transverse shear deformation can have significant effect on the global response and, consequently, on the dynamic response of laminated plates and shells made of advanced composite material [15,16]. As a result, the classical theories of laminated plates and shells underpredict the optimum values of the design variables. In addition, the boundary conditions at the edges play an important role in decreasing (or increasing) the dynamic response of laminated composites [17]. However, most of studies related to the design and control optimization of laminated composite plates and shells were carried out based on the classical theories of plates and shells for special cases of boundary conditions, and there exist few papers formulated based on shear deformation theories for various cases of boundary conditions [18,19].

<sup>\*</sup> Corresponding author. Tel.: +20-50-346-781; fax: +20-50-346-254. *E-mail address:* sinfac@mum.mans.eun.eg (M.E. Fares).

The current work deals with the minimization of the dynamic response of a composite laminated doubly curved shells using design and control optimization. The present formulation is based on a higher-order shear deformation shell theory with various cases of boundary conditions. The dynamic response of the shell is expressed as the sum of the total energy of the shell and a penalty functional involving closed loop control force. The ply thickness and fiber orientation angle are taken as design variables. Liapunov–Bellman theory is used to obtain solutions for controlled shell deflections and optimal control force. Various examples and numerical results for laminated symmetric (or antisymmetric) cylindrical and spherical shells are given. The effect of boundary conditions, number of layers, anisotropy ratio, aspect ratio, side-to-thickness ratio and radius-to-thickness ratio on the minimization process is illustrated.

#### 2. Geometry of the shell and basic equations

Let  $(\xi_1, \xi_2, z)$  denote the orthogonal curvilinear coordinates (or shell coordinates) such that the  $\xi_1$ - and  $\xi_2$ -curves are lines of curvature on the midsurface z = 0, and z-curves are straight lines perpendicular to the surface z = 0. For spherical and cylindrical shells, the lines of principal curvature coincide with the coordinate lines. The values of the principal radii of curvature of the middle surface are denoted by  $R_1$  and  $R_2$ . In this case, the distance dS between two points  $(\xi_1, \xi_2, z)$  and  $(\xi_1 + d\xi_1, \xi_2 + d\xi_2, z + dz)$  is given by

$$(\mathrm{d}S)^2 = L_1^2 (\mathrm{d}\xi_1)^2 + L_2^2 (\mathrm{d}\xi_2)^2 + L_3^2 (\mathrm{d}z)^2,$$

where Lame's coefficients  $L_1$ ,  $L_2$  and  $L_3$  are related to the surface metrics  $\alpha_1$ ,  $\alpha_2$  and  $\alpha_3$  by the following relations:

$$L_1 = \alpha_1 \left( 1 + \frac{z}{R_1} \right), \quad L_2 = \alpha_2 \left( 1 + \frac{z}{R_2} \right), \quad L_3 = 1.$$
 (1)

The shell under consideration is composed of a finite number of orthotropic layers N with total constant thickness h. Let  $z_k$  and  $z_{k-1}$  be the top and bottom z-coordinates of the kth lamina. The present study is based on a higher-order displacement field satisfying the condition that the transverse shear stresses vanish on the top and bottom surfaces of the shell. This displacement field is given by [20]

$$u_1 = \frac{1}{\alpha_1} (L_1 u) + z \psi - \frac{4z^3}{3h^2} \left( \psi + \frac{1}{\alpha_1} \frac{\partial w}{\partial \xi_1} \right), \tag{2a}$$

$$u_2 = \frac{1}{\alpha_2} (L_2 v) + z\phi - \frac{4z^3}{3h^2} \left(\phi + \frac{1}{\alpha_2} \frac{\partial w}{\partial \xi_2}\right),\tag{2b}$$

$$u_3 = w, \tag{2c}$$

where  $(u_1, u_2, u_3)$  are the displacements along  $\xi_1$ ,  $\xi_2$  and z directions, respectively, (u, v, w) are the displacements of a point on the midplane, and  $\psi$  and  $\phi$  are the rotations of normals to the midsurface with respect to the  $\xi_2$ - and  $\xi_1$ -axes. All displacement components  $(u, v, w, \psi, \phi)$  are functions of  $\xi_1$ ,  $\xi_2$  and time t.

Using the linear strain-displacement relations referred to an orthogonal curvilinear coordinate system, we obtain:

$$\varepsilon_i = \varepsilon_i^{(0)} + z(k_i^0 + \gamma z^2 k_i^2), \quad \varepsilon_3 = 0, \quad \varepsilon_j = \varepsilon_j^{(0)} + \gamma z^2 k_j^1 \quad (i = 1, 2, 6; \ j = 4, 5)$$
(3a)

where

$$\varepsilon_{1}^{(0)} = \frac{1}{\alpha_{1}} \frac{\partial u}{\partial \xi_{1}} + \frac{w}{R_{1}}, \quad \varepsilon_{2}^{(0)} = \frac{1}{\alpha_{2}} \frac{\partial v}{\partial \xi_{2}} + \frac{w}{R_{2}}, \quad \varepsilon_{4}^{(0)} = \frac{1}{\alpha_{2}} \frac{\partial w}{\partial \xi_{2}} + \phi,$$

$$\varepsilon_{5}^{(0)} = \frac{1}{\alpha_{1}} \frac{\partial w}{\partial \xi_{1}} + \psi, \quad \varepsilon_{6}^{(0)} = \frac{1}{\alpha_{1}} \frac{\partial v}{\partial \xi_{1}} + \frac{1}{\alpha_{2}} \frac{\partial u}{\partial \xi_{2}}, \quad k_{1}^{0} = \frac{1}{\alpha_{1}} \frac{\partial \psi}{\partial \xi_{1}},$$

$$k_{2}^{0} = \frac{1}{\alpha_{2}} \frac{\partial \phi}{\partial \xi}, \quad k_{6}^{0} = \frac{1}{\alpha_{2}} \frac{\partial \phi}{\partial \xi} + \frac{1}{\alpha_{2}} \frac{\partial \psi}{\partial \xi}, \quad k_{1}^{2} = \frac{-n_{2}}{\alpha_{2}} \frac{\partial \varepsilon_{5}^{(0)}}{\partial \xi},$$
(3b)

$$k_{2}^{2} = \frac{-n_{2}}{\alpha_{2}} \frac{\partial \varepsilon_{4}^{(0)}}{\partial \xi_{2}}, \quad k_{4}^{1} = -n_{1} \left( \frac{1}{\alpha_{2}} \frac{\partial w}{\partial \xi_{2}} + \phi \right), \quad k_{5}^{1} = -n_{1} \left( \frac{1}{\alpha_{1}} \frac{\partial w}{\partial \xi_{1}} + \psi \right),$$

$$k_{6}^{2} = -n_{2} \left( \frac{2}{\alpha_{1}a_{2}} \frac{\partial^{2} w}{\partial \xi_{1} \partial \xi_{2}} + \frac{1}{\alpha_{1}} \frac{\partial \phi}{\partial \xi_{1}} + \frac{1}{\alpha_{2}} \frac{\partial \psi}{\partial \xi_{2}} \right), \quad n_{1} = 3n_{2} = 4/h^{2}.$$
(3c)

The governing equations associated with the displacement field (2a)–(2c) may be obtained using the dynamic version of the virtual displacement principle in the form [20].

$$\frac{1}{\alpha_1}\frac{\partial N_1}{\partial \xi_1} + \frac{1}{\alpha_2}\frac{\partial N_6}{\partial \xi_2} = \overline{I}_1 \ddot{\boldsymbol{u}} + \overline{I}_2 \ddot{\boldsymbol{\psi}} - \frac{\gamma \overline{I}_3}{\alpha_1}\frac{\partial \ddot{\boldsymbol{w}}}{\partial \xi_1},\tag{4a}$$

$$\frac{1}{\alpha_1}\frac{\partial N_6}{\partial \xi_1} + \frac{1}{\alpha_2}\frac{\partial N_2}{\partial \xi_2} = \vec{I}_1' \vec{v} + \vec{I}_2' \vec{\phi} - \frac{\gamma \vec{I}_3'}{\alpha_2}\frac{\partial \vec{w}}{\partial \xi_2},\tag{4b}$$

$$\frac{1}{\alpha_1}\frac{\partial Q_1}{\partial \xi_1} + \frac{1}{\alpha_2}\frac{\partial Q_2}{\partial \xi_2} + q - \gamma n_1 \left(\frac{1}{\alpha_1}\frac{\partial K_1}{\partial \xi_1} + \frac{1}{\alpha_2}\frac{\partial K_2}{\partial \xi_2}\right) + \gamma n_2 \left(\frac{1}{\alpha_1^2}\frac{\partial^2 p_1}{\partial \xi_1^2} + \frac{2}{\alpha_1\alpha_2}\frac{\partial^2 p_6}{\partial \xi_1\partial \xi_2} + \frac{1}{\alpha_2^2}\frac{\partial^2 p_2}{\partial \xi_2^2}\right) - \frac{N_1}{R_1} - \frac{N_2}{R_2}$$

$$= L\ddot{w} + \eta \left(\frac{1}{\alpha_1}\frac{\partial \ddot{w}}{\partial \xi_1} + \frac{\overline{I}_5}{\alpha_2}\frac{\partial \ddot{v}}{\partial \xi_1} + \frac{\overline{I}_5}{\alpha_2}\frac{\partial \ddot{v}}{\partial \xi_2}\right) + \gamma n_2 \left(\frac{1}{\alpha_1^2}\frac{\partial^2 p_1}{\partial \xi_1^2} + \frac{2}{\alpha_1\alpha_2}\frac{\partial^2 p_6}{\partial \xi_1\partial \xi_2} + \frac{1}{\alpha_2^2}\frac{\partial^2 p_2}{\partial \xi_2^2}\right) - \frac{N_1}{R_1} - \frac{N_2}{R_2}$$

$$(4a)$$

$$=I_1\ddot{w} + \gamma \left(\overline{I}_3 \frac{1}{\alpha_1} \frac{\partial u}{\partial \xi_1} + \frac{I_5}{\alpha_1} \frac{\partial \psi}{\partial \xi_1} + \frac{I_3}{\alpha_2} \frac{\partial v}{\partial \xi_2} + \frac{I_5}{\alpha_2} \frac{\partial \varphi}{\partial \xi_2} - n_2^2 I_7 \left(\frac{1}{\alpha_1^2} \frac{\partial w}{\partial \xi_1^2} + \frac{1}{\alpha_2} \frac{\partial w}{\partial \xi_2}\right)\right), \tag{4c}$$

$$\frac{1}{\alpha_1}\frac{\partial M_1}{\partial \xi_1} + \frac{1}{\alpha_2}\frac{\partial M_6}{\partial \xi_2} - Q_1 + \gamma n_1 K_1 - \gamma n_2 \left(\frac{1}{\alpha_1}\frac{\partial p_1}{\partial \xi_1} + \frac{1}{\alpha_2}\frac{\partial p_2}{\partial \xi_2}\right) = \overline{I}_2 \ddot{\boldsymbol{u}} + \overline{I}_4 \ddot{\boldsymbol{\psi}} - \frac{\gamma I_5}{\alpha_1}\frac{\partial \ddot{\boldsymbol{w}}}{\partial \xi_1}, \tag{4d}$$

$$\frac{1}{\alpha_1}\frac{\partial M_6}{\partial\xi_1} + \frac{1}{\alpha_2}\frac{\partial M_2}{\partial\xi_2} - Q_2 + \gamma n_1 K_2 - \gamma n_2 \left(\frac{1}{\alpha_1}\frac{\partial p_6}{\partial\xi_1} + \frac{1}{\alpha_2}\frac{\partial p_2}{\partial\xi_2}\right) = \overline{I}_2'\ddot{v} + \overline{I}_4'\ddot{\phi} - \frac{\gamma \overline{I}_5'}{\alpha_2}\frac{\partial \ddot{w}}{\partial\xi_2},\tag{4e}$$

where

$$\overline{I}_1 = I_1 + \gamma \frac{2}{R_1} I_2, \quad \overline{I}_2 = I_2 + \gamma \frac{1}{R_1} I_3 - \gamma n_2 I_4 - \gamma \frac{n_2}{R_1} I_5, \quad \overline{I}_3 = n_2 I_4 + \gamma \frac{n_2}{R_1} I_5,$$
  
$$\overline{I}_4 = I_3 - 2\gamma n_2 I_5 + \gamma n_2^2 I_7, \quad \overline{I}_5 = n_2 I_5 - \gamma n_2^2 I_7, \quad I_n = \sum_{k=1}^N \int_{z_{k-1}}^{z_k} \rho^{(k)} z^{n-1} dz.$$

the quantities  $\overline{I}'_i$  have the same forms as  $\overline{I}_i$  except that  $R_1$  is replaced by  $R_2$ , q is a force distributed over the upper surface of the shell,  $\rho^{(k)}$  is the material density of the *k*th layer. The stress resultants are related to the strain components by the following laminate constitutive equations,

$$\begin{bmatrix} N_i \\ M_i \\ P_i \end{bmatrix} = \begin{bmatrix} A_{ij} & B_{ij} & \gamma E_{ij} \\ B_{ij} & D_{ij} & \gamma F_{ij} \\ E_{ij} & F_{ij} & H_{ij} \end{bmatrix} \begin{bmatrix} \varepsilon_j^{(0)} \\ k_j^0 \\ k_j^2 \\ k_j^2 \end{bmatrix} \quad (i, j = 1, 2, 6),$$
(5a)

$$\begin{bmatrix} Q_i \\ K_i \end{bmatrix} = \begin{bmatrix} A_{ij} & \gamma D_{ij} \\ D_{ij} & F_{ij} \end{bmatrix} \begin{bmatrix} \varepsilon_j^{(0)} \\ k_j^1 \end{bmatrix} \quad (i, j = 4, 5).$$
(5b)

The material elastic constants  $C_{ij}^{(k)}$  of the *k*th lamina are related to the homogeneous laminate stiffnesses  $A_{ij}$ ,  $B_{ij}$  etc., by the following expressions:

$$(A_{ij}, B_{ij}, D_{ij}, E_{ij}, F_{ij}, H_{ij}) = \sum_{k=1}^{N} \int_{z_{k-1}}^{z_k} C_{ij}^{(k)}(1, z, z^2, z^3, z^4, z^6) \, \mathrm{d}z \quad (i, j = 1, 2, 4, 5, 6).$$
(6)

The present control problem accounts for various cases of boundary conditions at the edges, i.e., when the shell edges are simply supported (*S*), clamped (*C*) free (*F*), or when combination of these boundary conditions are prescribed over the edges. Then, these boundary conditions on the edges perpendicular to  $\xi_1$ -curve associated with the present shell theory take the form:

$$S: v = w = \psi = N_1 = M_1 = P_1 = 0,$$
  

$$C: u = v = w = \psi = \phi = w_{,\xi_1} = 0,$$
  

$$F: N_1 = M_1 = P_1 = N_6 = M_6 - P_6 = \widehat{Q}_1 + P_{1,\xi_1} + P_{6,\xi_2} = 0,$$
(7)

where ( ),  $_{\xi_1}$  denotes partial differentiation with respect to  $\xi_1.$ 

Governing Eqs. (4a)–(4e) can be specialized for flat plates by setting  $1/R_1 = 1/R_2 = 0$ , for spherical shells by setting  $R_1 = R_2 = R$ ; and for cylindrical shells by setting  $1/R_1 = 0$ ,  $R_2 = R$ , and  $\xi_1$ -axis is taken along the generator of the cylinder. Governing equations of the first-order shear deformation (FST) can be deduced from those of the third-order theory (HST) by setting  $\gamma = 0$ . Also the classical theory (CST) is obtained from FST by setting

$$\psi = -\frac{1}{\alpha_1} \frac{\partial w}{\partial \xi_1}$$
 and  $\phi = -\frac{1}{\alpha_2} \frac{\partial w}{\partial \xi_2}$ 

#### 3. The control objective and optimization variables

The present study aims to minimize the dynamic response of a laminated doubly curved shell in a specified time  $0 \le t \le \tau \le \infty$  with the minimum possible expenditure of force  $q(\xi_1, \xi_2, t)$ . The total energy of the shell may be taken as a measure of the dynamic response so that the control objective may be written as

$$J(q, h_k, \theta_k) = \frac{1}{2} \int_0^\infty \int_0^b \int_0^a \int_{-\frac{h}{2}}^{\frac{h}{2}} \left[ \varepsilon_i \sigma_i + \rho^{(k)} (\dot{u}_1^2 + \dot{u}_2^2 + \dot{u}_3^2) \right] \alpha_1 \alpha_2 \, \mathrm{d}z \, \mathrm{d}\xi_1 \, \mathrm{d}\xi_2 \, \mathrm{d}t + \mu \int_0^\tau \int_0^b \int_0^a q^2 (\xi_1, \xi_2, t) \alpha_1 \alpha_2 \, \mathrm{d}\xi_1 \, \mathrm{d}\xi_2 \, \mathrm{d}t \quad (i = 1, 2, 4, 5, 6),$$
(8)

where *a* and *b* are curvilinear dimensions of the shell along  $\xi_1$ - and  $\xi_2$ -axes, respectively and the weighting factor  $\mu$  is a positive constant. The last term in (8) is a penalty functional involving the control function  $q \in L^2$  where  $L^2$  denotes the set of all bounded square integrable functions on the domain of the solution.

The cost functional (8) of the present control problem depends on the distributed force  $q(\xi_1, \xi_2, t)$ , the thickness of the layers  $h_k$  and fiber orientation angle  $\theta_k$ . Then the present optimal control problem can be reduced to determine the optimization variables q,  $h_k$ , and  $\theta_k$  that minimize the cost functional (8).

#### 4. Solution procedure

The solution of the system of partial differential Eqs. (4a)–(4e) with the boundary conditions (7), may be expanded in the form of double series in terms of the free vibration eigenfunctions of the shell. Then, the displacements functions  $(u, v, w, \psi, \phi)$  and the closed-loop control function q may be represented as:

$$(u, v, w, \psi, \phi, q) = \sum_{m,n} (U_{mn}XY_{,\xi_2}, V_{mn}X_{,\xi_1}Y, W_{mn}XY, \Psi_{mn}X_{,\xi_1}Y, \Phi_{mn}XY_{,\xi_2}, Q_{mn}XY),$$
(9)

where  $U_{mn}$ ,  $V_{mn}$ ,  $W_{mn}$ ,  $\Psi_{mn}$ ,  $\Phi_{mn}$  and  $Q_{mn}$  are unknown functions of time. The functions  $X(\xi_1)$  and  $Y(\xi_2)$  are continuous orthonormed functions which satisfy at least the geometric boundary conditions given in (7) and represent approximate shapes of the deflected surface of the vibrating shell. These functions, for different cases of boundary conditions are given in Appendix A.

Using Eqs. (3a), (3b), (3c), (5a) and (5b), we can get the governing Eqs. (4a)–(4e) in terms of the displacements. For these equations, the in-plane inertia terms may be neglected. Substituting expressions (9) into the resulting equations and multiplying each equation by the corresponding eigenfunction, then integrating over the domain of solution, we obtain after some mathematical manipulations, the following time equations:

$$\begin{bmatrix} U_1 & V_1 & W_1 & \Psi_1 & \Phi_1 \\ U_2 & V_2 & W_2 & \Psi_2 & \Phi_2 \\ U_3 & V_3 & W_3 & \Psi_3 & \Phi_3 \\ U_4 & V_4 & W_4 & \Psi_4 & \Phi_4 \\ U_5 & V_5 & W_5 & \Psi_5 & \Phi_5 \end{bmatrix} \begin{bmatrix} U_{mn} \\ V_{mn} \\ \Psi_{mn} \\ \Phi_{mn} \end{bmatrix} = \begin{bmatrix} W_1 \\ \overline{W}_2 \\ \overline{W}_3 \ddot{W}_{mn} - Q_{mn} \\ \overline{W}_4 \ddot{W}_{mn} \\ \overline{W}_5 \ddot{W}_{mn} \end{bmatrix},$$
(10)

the coefficients  $U_i$ ,  $V_i$ ,  $W_i$ ,  $\Phi_i$ ,  $\Psi_i$  and  $\overline{W}_i$  (i = 1, 2, ..., 5) are given in Appendix A. Solving the system (10), one gets an equation of the time-dependent functions  $W_{mn}$  and  $Q_{mn}$  only,

$$\ddot{W}_{mn} + \omega_{mn}^2 W_{mn} = l_{m,n} Q_{mn}, \quad \omega_{mn}^2 = \frac{\Delta_{mn}}{\Delta_{1mn}}, \quad l_{mn} = \frac{\Delta_0}{\Delta_{1mn}}, \tag{11}$$

where,  $\Delta_{mn}$ ,  $\Delta_{1mn}$  and  $\Delta_0$  are given in the Appendix B.

Following previous analogous steps, we can get the objective functional (8) in the final form:

$$J = \sum_{m,n} \int_0^\infty \left( k_1 W_{mn}^2 + k_2 W_{mn} Q_{mn} + k_3 Q_{mn}^2 + k_4 \dot{W}_{mn}^2 + k_5 \dot{W}_{mn} \dot{Q}_{mn} + k_6 \dot{Q}_{mn}^2 \right) \mathrm{d}t, \tag{12}$$

where, the coefficients  $k_i$  (i = 1, 2, ... 6) are given in Appendix C. Since the system of Eq. (11) is separable, hence the functional (12) depends only on the variables found in (m, n)th equation of the system. With the aid of this condition, the problem is reduced to a problem of analytical design of controllers [21,22] for every  $m, n = 1, 2, ... \infty$ .

Now the optimal control problem is to find firstly, the control function  $q_{mn}^{opt}(t)$  that satisfies the conditions

$$J(q_{mn}^{\text{opt}}) \leq J(q_{mn}) \text{ for all } q_{mn}(t) \in L^2([0,\infty]),$$

that is

$$\min_{q_{mn}} J = \min \sum J_{mn} = \sum_{m,n} \min_{q_{mn} \in L^2} J,$$

and, secondly, to find the optimum values of  $h_k$  and  $\theta_k$  from the following minimization condition:

$$Jig(q_{mn}^{ ext{opt}},h_k^{ ext{opt}}, heta_k^{ ext{opt}}ig) = \min_{h_k, heta_k} Iig(q_{mn}^{ ext{opt}},h_k, heta_kig), \quad \sum_k h_k = h, \quad 0 < heta < \pi/2.$$

For this problem, Liapunov–Bellman theory [22] is used to determine the control force q(x, y, t). This theory gives the necessary and sufficient conditions for minimizing the functional (12) in the form:

$$\min_{q} \left[ \frac{\partial L_{mn}}{\partial W_{mn}} \dot{W}_{mn} + \frac{\partial L_{mn}}{\partial \dot{W}_{mn}} \ddot{W}_{mn} + \overline{J}_{mn} \right] = 0, \tag{13}$$

provided that the Liapunov function

$$L_{mn} = A_{mn}W_{mn}^2 + 2B_{mn}W_{mn}\dot{W}_{mn} + C_{mn}\dot{W}_{mn}^2, \tag{14}$$

is positive definite, i.e.,  $A_{mn} > 0$ ,  $C_{mn} > 0$  and  $A_{mn}C_{mn} > B_{mn}^2$ , where  $\overline{J}_{mn}$  is the integrand of (12). Using Eq. (14) we can obtain the optimal control function in the form:

$$Q_{mn}^{\text{opt}} = \frac{-1}{2k_3} (2B_{mn}l_{mn} + k_2)W_{mn} - \frac{C_{mn}l_{mn}}{k_3}\dot{W}_{mn},\tag{15}$$

then, substituting Eq. (15) into (13) and equating the coefficients of  $W_{mn}^2$ ,  $\dot{W}_{mn}^2$  and  $W_{mn}\dot{W}_{mn}$  by zeros, the following system of equations is obtained

$$C_{mn}^{2}(a_{1}B_{mn}^{2} + a_{2}B_{mn} + a_{3}) + a_{4}B_{mn} + a_{5} = 0,$$

$$C_{mn}^{2}(a_{6}C_{mn}^{2} + a_{7}B_{mn} + a_{8}) + a_{9}B_{mn}^{2} + a_{10}B_{mn} + a_{11} = 0,$$

$$a_{12}A_{mn} + C_{mn}(a_{13}C_{mn}^{2} + a_{14}C_{mn}^{2}B_{mn} + a_{15}B_{mn}^{2} + a_{16}B_{mn} + a_{17}) = 0,$$
(16)

where  $a_i$  (i = 1, 2, ..., 17) are given in Appendix C. Under the condition that the Liapunov function is a positive definite, the solution of the system of nonlinear algebraic Eq. (16) may be obtained, then, using this solution into Eq. (11), one gets:

$$\ddot{W}_{mn} + \alpha_{mn}\dot{W}_{mn} + \beta_{mn}^2W_{mn} = 0, \quad \alpha_{mn} = \frac{C_{mn}l_{mn}^2}{k_3}, \quad \beta_{mn}^2 = \omega_{mn}^2 + \frac{l_{mn}}{2k_3}(2B_{mn}l_{mn} + k_2),$$

the solution of this equation when  $2\beta_{mn} > \alpha_{mn}$  is given by

$$W_{mn} = e^{\frac{-\nu_{mn}t}{2}} [\delta_{mn} \cos(\omega_{mn}^* t) + \tau_{mn} \sin(\omega_{mn}^* t)], \quad v_{mn} = \sqrt{\beta_{mn}^2 - \frac{1}{4} \alpha_{mn}^2},$$

where  $\delta_{mn}$ ,  $\tau_{mn}$  are unknown coefficients which may be obtained from the initial conditions by expanding it in a series. If the initial conditions have the form:

$$w(\xi_1,\xi_2,0) = \overline{A}(\xi_1,\xi_2), \quad \dot{w}(\xi_1,\xi_2,0) = 0,$$

then, the controlled deflection solution takes the form:

$$W_{mn} = \overline{A} e^{\frac{-\alpha_{mn}t}{2}} \left( \cos(\omega_{mn}^* t) + \frac{\alpha_{mn}}{2\omega_{mn}^*} \sin(\omega_{mn}^* t) \right).$$
(17)

Insert expressions (17) into (10), (12) and (15) we can get the controlled displacements, the total energy and the optimal control force. Then, we complete the minimization process for the dynamic response of the shell by determining the optimal design of the shell using the design variables  $\theta_k$  and  $h_k$ .

#### 5. Numerical results and discussion

Numerical results for maximum optimal control force q, central controlled deflection w and total energy J are presented for symmetric (or antisymmetric) angle-ply spherical and cylindrical shells with various cases of the boundary conditions (7). All layers of the laminate are assumed to be of the same orthotropic materials. A shear correction factor for FST is taken to be 5/6. The plane reduced stress material stiffnesses  $C_{ij}$  are given by

$$\begin{split} C_{11} &= \frac{E_1}{1 - v_{12}v_{21}}, \quad C_{12} = \frac{v_{12}E_2}{1 - v_{12}v_{21}}, \quad C_{22} = \frac{E_2}{1 - v_{12}v_{21}}, \\ C_{44} &= G_{23}, \quad C_{55} = G_{13}, \quad C_{66} = G_{12}, \qquad v_{ij}E_j = v_{ji}E_i \quad (i, j = 1, 2) \end{split}$$

where  $E_i$  are Young's moduli;  $v_{ij}$  are Poisson's ratios and  $G_{ij}$  are shear moduli. In all calculations, unless otherwise stated, the following parameters are used:

$$a = b = 20 \text{ in.}, \quad h = 2 \text{ in.}, \quad \rho = 0.00012 \text{ lb} - s^2/\text{in.}^4, \quad R_1 = R_2 = 5a, \quad \mu = 0.001,$$
  
$$\overline{A} = 10^3 l \omega^{-2}, \quad E_2 = 10^6 \text{ psi}, \quad E_1 = 25E_2, \quad G_{12} = G_{13} = 0.5E_2, \quad G_{23} = 0.2E_2, \quad v_{12} = 0.25$$

For the optimal design, we consider angle-ply  $(\theta, 0, \theta)$  laminated shells with outer layers having the same thickness; and therefore we take the optimization thickness variable *r* representing the ratio of the outer layer thickness to the total shell thickness. All calculations in tables and figures are carried out at the midpoint of the shell, and for maximum amplitude of *w* and *q*.

Table 1 contains numerical results of controlled central deflection w, controlled energy J and maximum control force q obtained using the various shell theories CST, FST and HST for three-, five- and thirteen-layer symmetric spherical and cylindrical shells with simply-supported edges (SSSS). Table 2 contains similar results for two-, four- and twelve-layer antisymmetric spherical and cylindrical shells. The CST under-predicts w, J and q due to the assumed infinite rigidity of the transverse normals, hence, the CST models the structure stiffer than it is, so, the structure needs less energy to control its dynamic response. But, the results predicted by various shell theories are very close for thin shells, while, the discrepancy between them are pronounced for thicker shells. Note that the deflections obtained by CST differ from those obtained using FST and HST for the symmetric case by 40% for h/a = 0.1, and by 75% for h/a = 0.2. Further, in the antisymmetric case, these differences are less, where their maximum reaches 50% for a/h = 0.2. The differences between FST and HST results do not exceed 10% for moderately thick shells. Also, these

Table 1

Values of q, J and w for three-, five- and thirteen-layer symmetric SSSS spherical and cylindrical shells according to CST, FST and HST, a = b = 20, R = 100,  $E_1/E_2 = 25$ 

| h           | Th.            | 45,0,45 |         |        | 45     | , -45, 0, -45, | 45     | 45, -45, 45, -45, 45, -45/0/sym. |         |        |
|-------------|----------------|---------|---------|--------|--------|----------------|--------|----------------------------------|---------|--------|
|             |                | q       | J       | w      | q      | J              | w      | q                                | J       | w      |
| Case 1: sph | nerical shell  |         |         |        |        |                |        |                                  |         |        |
| 0.5         | CST            | 487.20  | 45.312  | 1.2577 | 474.75 | 40.580         | 1.1395 | 465.07                           | 37.269  | 1.0556 |
|             | FST            | 489.11  | 46.090  | 1.2769 | 476.51 | 41.216         | 1.1556 | 466.70                           | 37.807  | 1.0694 |
|             | HST            | 489.53  | 46.271  | 1.2813 | 476.86 | 41.353         | 1.1590 | 467.00                           | 37.915  | 1.0721 |
| 1           | CST            | 307.19  | 12.945  | 0.2824 | 301.44 | 12.260         | 0.2680 | 297.25                           | 11.781  | 0.2579 |
|             | FST            | 318.49  | 14.393  | 0.3129 | 312.21 | 13.576         | 0.2958 | 307.53                           | 12.993  | 0.2836 |
|             | HST            | 320.85  | 14.720  | 0.3197 | 314.27 | 13.848         | 0.3015 | 309.35                           | 13.226  | 0.2884 |
| 2           | CST            | 145.91  | 2.7797  | 0.0441 | 144.27 | 2.7087         | 0.0430 | 143.32                           | 2.6683  | 0.0423 |
|             | FST            | 175.09  | 4.2664  | 0.0676 | 172.80 | 4.1355         | 0.0656 | 171.21                           | 4.0466  | 0.0642 |
|             | HST            | 180.34  | 4.5861  | 0.0726 | 177.49 | 4.4151         | 0.0699 | 175.46                           | 4.2965  | 0.0681 |
| 4           | CST            | 58.380  | 0.52759 | 0.0059 | 57.917 | 0.5189         | 0.0058 | 57.731                           | 0.51545 | 0.0057 |
|             | FST            | 100.23  | 1.7015  | 0.0192 | 99.276 | 1.6665         | 0.0188 | 98.602                           | 1.6422  | 0.0185 |
|             | HST            | 105.76  | 1.9195  | 0.0216 | 104.17 | 1.8572         | 0.0209 | 103.05                           | 1.8141  | 0.0204 |
| Case 2. cvl | indrical shell |         |         |        |        |                |        |                                  |         |        |
| 0.5         | CST            | 560 49  | 88 807  | 2 2595 | 553.97 | 83 491         | 2 1439 | 549 20                           | 79.818  | 2 0630 |
| 0.5         | FST            | 563.89  | 91 727  | 2 3223 | 557.26 | 86 126         | 2 2014 | 552 37                           | 82 234  | 2.0050 |
|             | HST            | 564.65  | 92 415  | 2 3370 | 557.94 | 86 697         | 2 2137 | 552.98                           | 82 722  | 2.1162 |
| 1           | 007            | 221.04  | 16.006  | 0.0507 | 220.02 | 15.000         | 0.0407 | 207.20                           | 15.604  | 0.0007 |
| 1           | CSI            | 331.94  | 16.296  | 0.3527 | 329.02 | 15.866         | 0.3437 | 327.36                           | 15.624  | 0.3387 |
|             | FSI            | 346.84  | 18.658  | 0.4015 | 343.72 | 18.140         | 0.3909 | 341.82                           | 17.829  | 0.3844 |
|             | HSI            | 350.01  | 19.209  | 0.4128 | 346.60 | 18.628         | 0.4008 | 344.45                           | 18.269  | 0.3934 |
| 2           | CST            | 149.99  | 2.9636  | 0.0470 | 148.91 | 2.9146         | 0.0462 | 148.50                           | 2.8959  | 0.0459 |
|             | FST            | 182.58  | 4.7180  | 0.0747 | 181.28 | 4.6381         | 0.0735 | 180.60                           | 4.5962  | 0.0728 |
|             | HST            | 188.62  | 5.1122  | 0.0809 | 186.79 | 4.9927         | 0.0790 | 185.68                           | 4.9211  | 0.0779 |
| 4           | CST            | 58.819  | 0.53623 | 0.0060 | 58.427 | 0.52873        | 0.0059 | 58.314                           | 0.52655 | 0.0059 |
|             | FST            | 102.77  | 1.7982  | 0.0203 | 102.18 | 1.7759         | 0.0200 | 101.85                           | 1.7631  | 0.0199 |
|             | HST            | 108.78  | 2.0435  | 0.0230 | 107.57 | 1.9940         | 0.0225 | 106.80                           | 1.9627  | 0.0221 |

Table 2

Values of q, J and w for two-, four- and twelve-layer antisymmetric SSSS spherical and cylindrical shells according to CST, FST and HST, a = b = 20, R = 100,  $E_1/E_2 = 25$ 

| h          | Th.             |        | 45, -45 |        |        | 45, -45, 45, -4 | 45     | 45, -45, 4     | 5, -45, 45, -4 | 5/antisym. |
|------------|-----------------|--------|---------|--------|--------|-----------------|--------|----------------|----------------|------------|
|            |                 | q      | J       | w      | q      | J               | w      | $\overline{q}$ | J              | w          |
| Case 1: sp | oherical shell  |        |         |        |        |                 |        |                |                |            |
| 0.5        | CST             | 411.23 | 23.302  | 0.6867 | 398.99 | 20.944          | 0.6218 | 395.60         | 20.334         | 0.6049     |
|            | FST             | 411.39 | 23.333  | 0.6879 | 399.66 | 21.067          | 0.6252 | 396.47         | 20.490         | 0.6092     |
|            | HST             | 411.38 | 23.336  | 0.6876 | 399.80 | 21.098          | 0.6260 | 396.63         | 20.522         | 0.6101     |
| 1          | CST             | 302.91 | 12.435  | 0.2717 | 272.63 | 9.2634          | 0.2042 | 265.39         | 8.6119         | 0.1902     |
|            | FST             | 304.58 | 12.636  | 0.2760 | 278.13 | 9.7881          | 0.2156 | 272.13         | 9.2208         | 0.2034     |
|            | HST             | 304.60 | 12.647  | 0.2762 | 279.32 | 9.9099          | 0.2181 | 273.31         | 9.3366         | 0.2059     |
| 2          | CST             | 182.60 | 4.6965  | 0.0741 | 144.37 | 2.7136          | 0.0430 | 137.06         | 2.4112         | 0.0383     |
|            | FST             | 191.92 | 5.3088  | 0.0838 | 164.47 | 3.6816          | 0.0584 | 159.74         | 3.4400         | 0.0547     |
|            | HST             | 192.11 | 5.3337  | 0.0842 | 168.21 | 3.8887          | 0.0617 | 163.12         | 3.6191         | 0.0575     |
| 4          | CST             | 85.982 | 1.1910  | 0.0131 | 61.330 | 0.5843          | 0.0065 | 57.270         | 0.5070         | 0.0056     |
|            | FST             | 108.44 | 2.0134  | 0.0226 | 95.959 | 1.5477          | 0.0175 | 94.257         | 1.4895         | 0.0168     |
|            | HST             | 108.53 | 2.0290  | 0.0228 | 100.80 | 1.7290          | 0.0195 | 98.182         | 1.6329         | 0.0184     |
| Case 2. c  | lindrical shell |        |         |        |        |                 |        |                |                |            |
| 0.5        | CST             | 549 04 | 79 737  | 2 0617 | 514 88 | 58 186          | 1 5698 | 506 27         | 53 829         | 1 4662     |
| 0.5        | FST             | 549 52 | 80.097  | 2.0697 | 516.62 | 59 116          | 1 5918 | 508.46         | 54 905         | 1 4920     |
|            | HST             | 549 53 | 80 117  | 2.0701 | 517.02 | 59 346          | 1 5971 | 508.88         | 55 125         | 1 4971     |
| 1          | COT             | 200.00 | 27.200  | 0.5754 | 227.26 | 15 (14          | 0.2296 | 214.20         | 12.052         | 0.2010     |
| 1          | CSI             | 389.90 | 27.300  | 0.5754 | 327.20 | 13.014          | 0.3380 | 314.30         | 15.852         | 0.3018     |
|            | F51<br>UST      | 393.93 | 28.294  | 0.3931 | 337.39 | 17.100          | 0.3708 | 320.39         | 15.498         | 0.3303     |
|            | пы              | 394.03 | 26.545  | 0.3939 | 559.91 | 17.341          | 0.3783 | 528.00         | 13.820         | 0.3431     |
| 2          | CST             | 210.15 | 6.6196  | 0.1040 | 156.36 | 3.2623          | 0.0517 | 147.12         | 2.8352         | 0.0450     |
|            | FST             | 225.39 | 7.9132  | 0.1243 | 183.48 | 4.7739          | 0.0756 | 176.90         | 4.3760         | 0.0694     |
|            | HST             | 225.79 | 7.9670  | 0.1250 | 188.86 | 5.1275          | 0.0811 | 181.64         | 4.6694         | 0.0740     |
| 4          | CST             | 90.382 | 1.3267  | 0.0146 | 62.856 | 0.61535         | 0.0068 | 58.508         | 0.53030        | 0.0059     |
|            | FST             | 118.35 | 2.4438  | 0.0274 | 102.60 | 1.7915          | 0.0202 | 100.53         | 1.7140         | 0.0194     |
|            | HST             | 118.52 | 2.4665  | 0.0276 | 108.65 | 2.0385          | 0.0230 | 105.38         | 1.9065         | 0.0215     |

differences in the control force do not exceed 45% for the symmetric case and 25% for the antisymmetric case. In general, the symmetric laminated shells are more sensitive to the transverse shear effect than the antisymmetric ones. This is because that the angle-ply symmetric shells offer more shear stiffnesses than the antisymmetric shells, so, they exhibit bending-twisting coupling which has the effect of increasing the flexibility of the transverse normals.

The dependence of the control process on the number of layers N is illustrated in Tables 3 and 4, where the values of q, J and w are presented against the number of layers N for symmetric and antisymmetric shells with various cases of boundary conditions. These results show that the HST is believed to be more accurate than CST and FST for various cases of boundary conditions. Also, the number of layers has a weak effect on the damping process of the dynamic response for the symmetric shells, while, this effect is more obvious in antisymmetric shells. In general, the influence of the number of layers dies out rapidly when  $N \ge 5$ . The above observation can be explained by the fact that the symmetric shells exhibit no coupling between bending and extension, and this coupling appears in antisymmetric shells and makes them more flexible. Moreover, this coupling disappears as the number of layers increases. Note that, the cylindrical shells need more expenditure of control energy to reduce their dynamic responses than the symmetric ones of same material and geometry.

The variation of q, J and w against the radius of curvature R is presented in Table 5 for symmetric spherical and cylindrical shells with simply-supported edges. The previous conclusions about the discrepancy between the CST, FST and HST result still hold for the results in Table 5. In addition, this discrepancy increases as the radius of the shell increases. As it is known for shallow shells that the effect of shear deformation is weak, but the present results for shallow shells have high sensitivity to the shear deformation effect. This may be explained as for moderately thick shallow shell, the thickness has dominant effect more than the shell radius.

Tables 6–8 include optimum values of fiber orientation angle  $\theta_{opt}$  and thickness ratio  $r_{opt}$  against side-to-thickness ratio, aspect ratio, and orthotropy ratio for  $(\theta, 0, \theta)$  symmetric spherical and cylindrical shells in various cases of boundary conditions. Note that, for each case of boundary conditions, there is a suitable optimal design for the shell to

Table 3 Effect of number of layers *N* on *q*, *J* and *w* for symmetric (45, -45..., 0..., -45, 45) shells according to CST, FST and HST with various boundary conditions, a/b = 1, a/h = 5,  $E_1/E_2 = 25$ , R/h = 25

| N       | Th.             |                | CCSS   |        |        | CCCC   |        | CFSS           |        |        |  |
|---------|-----------------|----------------|--------|--------|--------|--------|--------|----------------|--------|--------|--|
|         |                 | $\overline{q}$ | J      | w      | q      | J      | w      | $\overline{q}$ | J      | w      |  |
| Case 1: | spherical shell |                |        |        |        |        |        |                |        |        |  |
| 3       | CST             | 88.451         | 0.4917 | 0.0053 | 149.78 | 0.5780 | 0.0061 | 278.86         | 18.928 | 0.0495 |  |
|         | FST             | 175.36         | 2.1637 | 0.0237 | 325.17 | 3.1381 | 0.0334 | 305.50         | 26.788 | 0.0745 |  |
|         | HST             | 182.03         | 2.3567 | 0.0258 | 339.34 | 3.4616 | 0.0368 | 314.06         | 29.378 | 0.0814 |  |
| 5       | CST             | 89.031         | 0.4985 | 0.0054 | 149.89 | 0.5788 | 0.0061 | 288.96         | 20.726 | 0.0530 |  |
|         | FST             | 176.37         | 2.1913 | 0.0240 | 325.01 | 3.1348 | 0.0333 | 311.91         | 28.571 | 0.0790 |  |
|         | HST             | 182.96         | 2.3832 | 0.0261 | 338.12 | 3.4345 | 0.0365 | 318.45         | 30.806 | 0.0854 |  |
| 13      | CST             | 89.210         | 0.5005 | 0.0054 | 149.91 | 0.5791 | 0.0061 | 297.84         | 22.456 | 0.0563 |  |
|         | FST             | 177.51         | 2.2222 | 0.0243 | 324.92 | 3.1321 | 0.0333 | 318.41         | 30.429 | 0.0835 |  |
|         | HST             | 184.48         | 2.4266 | 0.0266 | 337.52 | 3.4203 | 0.0363 | 321.38         | 31.827 | 0.0883 |  |
| Case 1. | cvlindrical she | 11             |        |        |        |        |        |                |        |        |  |
| 3       | CST             | 89.192         | 0.5005 | 0.0054 | 150.76 | 0.5861 | 0.0061 | 305.67         | 24.312 | 0.0605 |  |
|         | FST             | 181.95         | 2.3484 | 0.0257 | 336.65 | 3.3928 | 0.0361 | 347.50         | 39.575 | 0.1025 |  |
|         | HST             | 189.52         | 2.5780 | 0.0282 | 352.54 | 3.7745 | 0.0401 | 361.20         | 45.445 | 0.1161 |  |
| 5       | CST             | 89.727         | 0.5068 | 0.0055 | 150.81 | 0.5866 | 0.0061 | 306.40         | 24.357 | 0.0602 |  |
|         | FST             | 182.59         | 2.3667 | 0.0259 | 336.01 | 3.3784 | 0.0359 | 337.71         | 36.337 | 0.0963 |  |
|         | HST             | 190.01         | 2.5927 | 0.0284 | 350.64 | 3.7287 | 0.0396 | 346.54         | 40.023 | 0.1059 |  |
| 13      | CST             | 89.851         | 0.5082 | 0.0055 | 150.81 | 0.5865 | 0.0061 | 306.49         | 24.350 | 0.0601 |  |
|         | FST             | 183.32         | 2.3874 | 0.0262 | 335.44 | 3.3654 | 0.0358 | 330.63         | 34.188 | 0.0922 |  |
|         | HST             | 191.09         | 2.6256 | 0.0287 | 349.46 | 3.7004 | 0.0393 | 334.19         | 35.983 | 0.0982 |  |

Table 4 Effect of number of layers *N* on *q*, *J* and *w* for antisymmetric (45, -45, ...) shells according to CST, FST and HST with various boundary conditions, a/b = 1, a/h = 5,  $E_1/E_2 = 25$ , R/h = 25

| N       | Th.               |                | CCSS   |        |        | CCCC    |        | CFSS           |        |        |
|---------|-------------------|----------------|--------|--------|--------|---------|--------|----------------|--------|--------|
|         |                   | $\overline{q}$ | J      | W      | q      | J       | w      | $\overline{q}$ | J      | w      |
| Case 1: | spherical shell   |                |        |        |        |         |        |                |        |        |
| 2       | CST               | 134.70         | 1.1867 | 0.0127 | 227.75 | 1.3921  | 0.0144 | 243.48         | 15.603 | 0.0514 |
|         | FST               | 192.29         | 2.6443 | 0.0288 | 348.01 | 3.6462  | 0.0386 | 248.02         | 17.009 | 0.0581 |
|         | HST               | 192.14         | 2.6550 | 0.0290 | 347.40 | 3.6501  | 0.0387 | 246.09         | 16.793 | 0.0577 |
| 4       | CST               | 95.644         | 0.5780 | 0.0062 | 161.43 | 0.67460 | 0.0071 | 233.39         | 12.782 | 0.0385 |
|         | FST               | 175.17         | 2.1583 | 0.0236 | 322.55 | 3.0812  | 0.0328 | 233.04         | 14.004 | 0.0467 |
|         | HST               | 184.45         | 2.4262 | 0.0265 | 339.70 | 3.4705  | 0.0368 | 231.19         | 13.998 | 0.0476 |
| 12      | CST               | 89.241         | 0.5010 | 0.0054 | 150.59 | 0.58433 | 0.0061 | 229.97         | 12.092 | 0.0358 |
|         | FST               | 172.88         | 2.0970 | 0.0230 | 319.25 | 3.0111  | 0.0320 | 228.83         | 13.324 | 0.0444 |
|         | HST               | 179.94         | 2.2976 | 0.0252 | 331.91 | 3.2932  | 0.0350 | 227.53         | 13.372 | 0.0453 |
| Case 2. | culindrical shell | 1              |        |        |        |         |        |                |        |        |
| 2.      | CST               | 138 68         | 1 2637 | 0.0135 | 232.40 | 1 4546  | 0.0151 | 320.28         | 31 833 | 0.0904 |
| -       | FST               | 205 58         | 3 0717 | 0.0335 | 367 30 | 4 1227  | 0.0437 | 338.68         | 39 315 | 0 1135 |
|         | HST               | 205.53         | 3.0870 | 0.0336 | 366.68 | 4.1275  | 0.0437 | 334.79         | 38.286 | 0.1118 |
| 4       | CST               | 97.035         | 0.5958 | 0.0064 | 163.05 | 0.68912 | 0.0072 | 287.94         | 21.295 | 0.0568 |
|         | FST               | 185.03         | 2.4365 | 0.0267 | 337.73 | 3.4166  | 0.0363 | 298.68         | 26.117 | 0.0767 |
|         | HST               | 196.14         | 2.7824 | 0.0304 | 357.70 | 3.9013  | 0.0414 | 297.01         | 26.306 | 0.0792 |
| 12      | CST               | 90.374         | 0.5144 | 0.0056 | 151.89 | 0.59521 | 0.0062 | 279.81         | 19.336 | 0.0512 |
|         | FST               | 182.32         | 2.3588 | 0.0258 | 333.89 | 3.3306  | 0.0354 | 289.46         | 23.855 | 0.0708 |
|         | HST               | 190.76         | 2.6156 | 0.0286 | 348.53 | 3.6781  | 0.0391 | 288.75         | 24.174 | 0.0732 |

improve its performance. Further the dimensions of the shell with the orthotropy ratio have an important role at determining the optimal design. For example, the cross-ply lamination scheme with layers of equithickness is the

Table 5

Values of q, J and w for three-, five- and thirteen-layer symmetric SSSS spherical and cylindrical shells according to CST, FST and HST, a/b = 1, a/h = 10,  $E_1/E_2 = 25$ 

| R          | Th.             |                | 45,0,45   |          | 4      | 5, -45, 0, -45, | 45       | 45, -45, 45, -45, 45, -45, /0/sym. |         |          |  |
|------------|-----------------|----------------|-----------|----------|--------|-----------------|----------|------------------------------------|---------|----------|--|
|            |                 | $\overline{q}$ | J         | w        | q      | J               | W        | $\overline{q}$                     | J       | w        |  |
| Case 1: sp | oherical shell  |                |           |          |        |                 |          |                                    |         |          |  |
| 10         | CST             | 56.358         | 0.32451   | 0.004789 | 52.388 | 0.28023         | 0.004161 | 49.157                             | 0.24836 | 0.003733 |  |
|            | FST             | 57.315         | 0.33671   | 0.004977 | 53.160 | 0.28941         | 0.004305 | 49.806                             | 0.25566 | 0.003849 |  |
|            | HST             | 57.420         | 0.33844   | 0.005002 | 53.243 | 0.29065         | 0.004322 | 49.863                             | 0.25654 | 0.003862 |  |
| 50         | CST             | 132.60         | 2.2290    | 0.035302 | 129.51 | 2.1141          | 0.033500 | 127.24                             | 2.0330  | 0.032233 |  |
|            | FST             | 152.74         | 3.0886    | 0.048948 | 148.35 | 2.8886          | 0.045807 | 144.98                             | 2.7411  | 0.043507 |  |
|            | HST             | 156.06         | 3.2529    | 0.051518 | 151.18 | 3.0221          | 0.047900 | 147.41                             | 2.8532  | 0.045267 |  |
| 100        | CST             | 145.91         | 2.7796    | 0.044084 | 144.26 | 2.7086          | 0.042967 | 143.31                             | 2.6680  | 0.042334 |  |
|            | FST             | 175.07         | 4.2655    | 0.067614 | 172.80 | 4.1350          | 0.065562 | 171.18                             | 4.0453  | 0.064164 |  |
|            | HST             | 180.33         | 4.5860    | 0.072615 | 177.48 | 4.4147          | 0.069935 | 175.44                             | 4.2951  | 0.068074 |  |
| $\infty$   | CST             | 151.42         | 3.0300    | 0.048068 | 150.54 | 2.9898          | .047434  | 150.32                             | 2.9796  | 0.047273 |  |
|            | FST             | 185.28         | 4.8893    | 0.077459 | 184.37 | 4.8319          | 0.076564 | 184.04                             | 4.8111  | 0.076243 |  |
|            | HST             | 191.66         | 5.3155    | 0.084110 | 190.21 | 5.2192          | 0.082604 | 189.48                             | 5.1691  | 0.081827 |  |
| Case 2: er | lindrical shall |                |           |          |        |                 |          |                                    |         |          |  |
| 10         | CST             | 97 401         | 1 0213    | 0.0147   | 97 401 | 1 0213          | 0.0147   | 87 430                             | 0.8219  | 0.0121   |  |
| 10         | FST             | 102.94         | 1 1 5 4 3 | 0.0167   | 102.94 | 1 1 5 4 3       | 0.0167   | 91 522                             | 0.9088  | 0.0121   |  |
|            | HST             | 103.69         | 1.1345    | 0.0170   | 103.69 | 1 1744          | 0.0170   | 91.922                             | 0.9199  | 0.0135   |  |
|            |                 | 105.05         |           | 0.0170   | 105.05 |                 | 0.0170   | 51.577                             | 0.9199  | 0.0155   |  |
| 50         | CST             | 146.36         | 2.7895    | 0.0441   | 146.36 | 2.7895          | 0.0441   | 143.68                             | 2.6761  | 0.0423   |  |
|            | FST             | 175.62         | 4.2814    | 0.0676   | 175.62 | 4.2814          | 0.0676   | 171.64                             | 4.0585  | 0.0642   |  |
|            | HST             | 180.89         | 4.6023    | 0.0726   | 180.89 | 4.6023          | 0.0726   | 175.91                             | 4.3091  | 0.0681   |  |
| 100        | CST             | 150.09         | 2.9659    | 0.0470   | 150.09 | 2.9659          | 0.0470   | 148.56                             | 2.8972  | 0.0459   |  |
|            | FST             | 182.69         | 4.7216    | 0.0747   | 182.69 | 4.7216          | 0.0747   | 180.67                             | 4.5984  | 0.0728   |  |
|            | HST             | 188.75         | 5.1162    | 0.0809   | 188.75 | 5.1162          | 0.0809   | 185.75                             | 4.9235  | 0.0779   |  |
| $\infty$   | CST             | 151.08         | 3.0137    | 0.0478   | 151.08 | 3.0137          | 0.0478   | 149.87                             | 2.9586  | 0.0469   |  |
|            | FST             | 184.63         | 4.8467    | 0.0768   | 184.63 | 4.8467          | 0.0768   | 183.19                             | 4.7571  | 0.0754   |  |
|            | HST             | 190.91         | 5.2637    | 0.0833   | 190.91 | 5.2637          | 0.0833   | 188.52                             | 5.1060  | 0.0808   |  |

Table 6

Optimum values of  $\theta_{opt}$  and  $r_{opt}$  for  $(\theta, 0, \theta)$  spherical and cylindrical shell against a/h for various boundary conditions (BC),  $E_1/E_2 = 25$ , R/a = 5, a/b = 1

| BC   | Opt.               |         | <i>a/h</i>    |       |       |       |         |                           |       |       |       |  |  |
|------|--------------------|---------|---------------|-------|-------|-------|---------|---------------------------|-------|-------|-------|--|--|
|      |                    | 5       | 10            | 15    | 20    | 25    | 5       | 10                        | 15    | 20    | 25    |  |  |
|      |                    | Case 1: | spherical she | -11   |       |       | Case 2: | Case 2: cylindrical shell |       |       |       |  |  |
| SSSS | $\theta_{opt}$     | 45°     | 45°           | 45°   | 45°   | 45°   | 44.7    | 44.9°                     | 45°   | 44.9° | 44.9° |  |  |
|      | r <sub>opt</sub>   | 0.5     | 0.5           | 0.5   | 0.5   | 0.5   | 0.5     | 0.5                       | 0.5   | 0.5   | 0.5   |  |  |
| CSSS | $\theta_{\rm opt}$ | 33.1°   | 35.2°         | 35.6° | 36.2° | 36.7° | 33°     | 36.9°                     | 39.5° | 41.6° | 43.4° |  |  |
|      | r <sub>opt</sub>   | 0.31    | 0.41          | 0.5   | 0.5   | 0.5   | 0.27    | 0.41                      | 0.49  | 0.5   | 0.5   |  |  |
| CCSS | $\theta_{\rm opt}$ | 30°     | 27.1°         | 19.5° | 9.6°  | 0°    | 31.1°   | 28.7°                     | 21.9° | 14.2° | 8°    |  |  |
|      | r <sub>opt</sub>   | 0.19    | 0.21          | 0.21  | 0.2   | Open  | 0.21    | 0.23                      | 0.23  | 0.25  | 0.38  |  |  |
| CCCC | $\theta_{\rm opt}$ | 90°     | 90°           | 90°   | 90°   | 90°   | 63.7°   | 68.1°                     | 90°   | 90°   | 90°   |  |  |
|      | r <sub>opt</sub>   | 0.03    | 0.05          | 0.05  | 0.05  | 0.05  | 0.5     | 0.5                       | 0.5   | 0.5   | 0.5   |  |  |
| CFSS | $\theta_{\rm opt}$ | 90°     | 90°           | 90°   | 90°   | 90°   | 90°     | 90°                       | 90°   | 90°   | 90°   |  |  |
|      | r <sub>opt</sub>   | 0.5     | 0.28          | 0.12  | 0.06  | 0.01  | 0.5     | 0.5                       | 0.5   | 0.5   | 0.5   |  |  |

optimal design for symmetric shells when  $a/b \ge 3$ , and when  $a/h \ge 15$  in the CCCC and CFSS boundary conditions cases. Particularly, for large value of  $E_1/E_2$ .

Table 7 Optimum values of  $\theta_{opt}$  and  $r_{opt}$  for  $(\theta, 0, \theta)$  spherical and cylindrical shell against a/b for various boundary conditions (BC),  $E_1/E_2 = 25$ , R/a = 5, a/h = 10

| BC   | Opt.               |            | <i>a/b</i>     |     |     |           |                           |     |     |  |  |  |  |
|------|--------------------|------------|----------------|-----|-----|-----------|---------------------------|-----|-----|--|--|--|--|
|      |                    | 1          | 2              | 3   | 4   | 1         | 2                         | 3   | 4   |  |  |  |  |
|      |                    | Case 1: sp | oherical shell |     |     | Case 2: c | Case 2: cylindrical shell |     |     |  |  |  |  |
| SSSS | $\theta_{\rm opt}$ | 45°        | 79.9°          | 90° | 90° | 44.9°     | 80.2°                     | 90° | 90° |  |  |  |  |
|      | ropt               | 0.5        | 0.5            | 0.5 | 0.5 | 0.5       | 0.5                       | 0.5 | 0.5 |  |  |  |  |
| CSSS | $\theta_{\rm opt}$ | 35.2°      | 77.4°          | 90° | 90° | 36.9°     | 77.7°                     | 90° | 90° |  |  |  |  |
|      | r <sub>opt</sub>   | 0.41       | 0.5            | 0.5 | 0.5 | 0.41      | 0.5                       | 0.5 | 0.5 |  |  |  |  |
| CCSS | $\theta_{\rm opt}$ | 27.1°      | 77.2°          | 90° | 90° | 28.7°     | 77.5°                     | 90° | 90° |  |  |  |  |
|      | r <sub>opt</sub>   | 0.21       | 0.5            | 0.5 | 0.5 | 0.23      | 0.5                       | 0.5 | 0.5 |  |  |  |  |
| CCCC | $\theta_{\rm opt}$ | 90°        | 90°            | 90° | 90° | 68.1°     | 90°                       | 90° | 90° |  |  |  |  |
|      | ropt               | 0.05       | 0.07           | 0.5 | 0.5 | 0.5       | 0.5                       | 0.5 | 0.5 |  |  |  |  |
| CFSS | $\theta_{\rm opt}$ | 90°        | 90°            | 90° | 90° | 90°       | 90°                       | 90° | 90° |  |  |  |  |
|      | r <sub>opt</sub>   | 0.28       | 0.5            | 0.5 | 0.5 | 0.5       | 0.5                       | 0.5 | 0.5 |  |  |  |  |

Table 8

Optimal quantities (opt.) for spherical and cylindrical shell against  $E_1/E_2$  for various boundary conditions (BC), a/h = 10, R/a = 5, a/b = 1 (open = arbitrary)

| BC   | Opt.               |         | $E_1/E_2$     |       |       |       |         |                           |       |       |       |  |  |
|------|--------------------|---------|---------------|-------|-------|-------|---------|---------------------------|-------|-------|-------|--|--|
|      |                    | 1       | 5             | 10    | 25    | 40    | 1       | 5                         | 10    | 25    | 40    |  |  |
|      |                    | Case 1: | spherical she | 11    |       |       | Case 2: | Case 2: cylindrical shell |       |       |       |  |  |
| SSSS | $\theta_{\rm opt}$ | 90°     | 45°           | 45°   | 45°   | 45°   | 90°     | 45°                       | 44.9° | 44.9° | 44.8° |  |  |
|      | r <sub>opt</sub>   | 0.36    | 0.5           | 0.5   | 0.5   | 0.5   | 0.36    | 0.5                       | 0.5   | 0.5   | 0.5   |  |  |
| CSSS | $\theta_{\rm opt}$ | 90°     | 31.9°         | 33.5° | 35.3° | 36.3° | 90°     | 32.8°                     | 34.5° | 36.9° | 39.4° |  |  |
|      | r <sub>opt</sub>   | 0.28    | 0.43          | 0.42  | 0.41  | 0.42  | 0.28    | 0.43                      | 0.41  | 0.41  | 0.43  |  |  |
| CCSS | $\theta_{\rm opt}$ | 0°      | 0°            | 16.3° | 27.0° | 29.4° | 0°      | 0°                        | 17.7° | 28.7° | 31.8° |  |  |
|      | r <sub>opt</sub>   | Open    | Open          | 0.19  | 0.21  | 0.21  | Open    | Open                      | 0.21  | 0.23  | 0.24  |  |  |
| CCCC | $\theta_{\rm opt}$ | 45°     | 90°           | 90°   | 90°   | 90°   | 45°     | 90°                       | 90°   | 68.1° | 68.8° |  |  |
|      | r <sub>opt</sub>   | 0.5     | 0.03          | 0.04  | 0.05  | 0.04  | 0.5     | 0.5                       | 0.5   | 0.5   | 0.5   |  |  |
| CFSS | $\theta_{\rm opt}$ | 45.8°   | 90°           | 90°   | 90°   | 90°   | 46.1°   | 90°                       | 90°   | 90°   | 90°   |  |  |
|      | r <sub>opt</sub>   | 0.5     | 0.34          | 0.34  | 0.28  | 0.12  | 0.5     | 0.5                       | 0.5   | 0.5   | 0.5   |  |  |



Fig. 1. Curves of J and q plotted against R for  $(\theta, 0, \theta)$  CSSS spherical shell, a/b = 1, a/h = 10,  $E_1/E_2 = 25$ .

Figs. 1 and 2 display *J*- and *q*-curves against the radius *R* for  $(\theta, 0, \theta)$  symmetric spherical and cylindrical shells with three different optimal designs, which are partially optimal design over the thickness ratio *r*, partially optimal design over the fiber orientation angle  $\theta$  and optimal design over both  $\theta$  and *r*. All the previous optimal designs considerably reduce the dynamic response of the shell as well as the maximum control force (or control energy). But, the optimal design over both  $\theta$  and *r* is the most efficient. The effect of side-to-thickness ratio on the energy *J* and the control force q is presented in Fig. 3. The figure confirms the efficiency of the present optimal design over  $\theta$  and *r* for all side-tothickness ratios, particularly, for thinner shells (a/h > 10) which need more expenditure of energy to control its dynamic response. The dependence of *J* and *q* on the orthotropy ratio  $E_1/E_2$  and aspect ratio a/b is presented in Figs. 4 and 5. These figures reveal that the shells may be tailored using  $E_1/E_2$  and a/b to improve its performance, where *J* and *q* are rapidly decreasing with increasing the ratios  $E_1/E_2$  and a/b. Thus the present optimization control may be extended to include four or five design variables.



Fig. 2. Curves of J and q plotted against R for  $(\theta, 0, \theta)$  CCSS cylindrical shell, a/b = 1, a/h = 10,  $E_1/E_2 = 25$ .



Fig. 3. Curves of J and q plotted against a/h for  $(\theta, 0, \theta)$  CSSS spherical shell, a/b = 1,  $E_1/E_2 = 25$ , R/h = 50.



Fig. 4. Curves of J and q plotted against  $E_1/E_2$  for  $(\theta, 0, \theta)$  CSSS spherical shell, a/b = 1, a/h = 10, R/h = 50.



Fig. 5. Curves of J and q plotted against a/b for  $(\theta, 0, \theta)$  CCSS spherical shell,  $E_1/E_2 = 25$ , a/h = 10, R/h = 50.

#### 6. Conclusion

A structural and control optimization technique for minimizing the dynamic response of composite laminated doubly curved shells is presented. A higher-order shell theory is used to formulate the control objective for various cases of boundary conditions. Optimal levels of ply thickness, fiber orientation angle and closed-loop control force are determine for angle-ply orthotropic laminated spherical and cylindrical shells in various cases of boundary conditions. The discrepancy between the CST, FST and HST results is investigated by numerical examples. The effect of the transverse shear deformation on the control optimization process is studied for symmetric and antisymmetric shells. It is found that the optimization variables of the angle-ply symmetric laminated shells are more sensitive to the transverse shear effect than those of the antisymmetric ones. While, the number of layers has more effect on the antisymmetric shells than the symmetric ones. For each case of boundary conditions, there is a suitable optimal design for the shell to improve its performance. The present optimal control approach is believed to be more efficient.

### Appendix A

$$\begin{split} \mathbf{SS} : X(\xi_1) &= \sin \mu_m \alpha_1 \xi_1, \quad \mu_m = m\pi/a. \\ \mathbf{CC} : X(\xi_1) &= \sin \mu_m \alpha_1 \xi_1 - \sinh \mu_m \alpha_1 \xi_1 - \eta_m (\cos \mu_m \alpha_1 \xi_1 - \cosh \mu_m \alpha_1 \xi_1), \\ \eta_m &= (\sin \mu_m a - \sinh \mu_m a)/(\cos \mu_m a - \cosh \mu_m a), \quad \mu_m = (m + 0.5)\pi/a. \\ \mathbf{CS} : X(\xi_1) &= \sin \mu_m \alpha_1 \xi_1 - \sinh \mu_m \alpha_1 \xi_1 - \eta_m (\cos \mu_m \alpha_1 \xi_1 - \cosh \mu_m \alpha_1 \xi_1), \\ \eta_m &= (\sin \mu_m a + \sinh \mu_m a)/(\cos \mu_m a + \cosh \mu_m a), \quad \mu_m = (m + 0.25)\pi/a. \\ \mathbf{CF} : X(\xi_1) &= \sin \mu_m \alpha_1 \xi_1 - \sinh \mu_m \alpha_1 \xi_1 - \eta_m (\cos \mu_m \alpha_1 \xi_1 - \cosh \mu_m \alpha_1 \xi_1), \\ \eta_m &= (\sin \mu_m a + \sinh \mu_m a)/(\cos \mu_m a + \cosh \mu_m a), \quad \mu_1 = 1.875/a, \quad \mu_2 = 4.694/a, \\ \mu_3 &= 7.855/a, \quad \mu_4 = 10.996/a \quad \text{and} \quad \mu_m = (m - 0.25)\pi/a, \quad \text{for } m \ge 5. \end{split}$$

Along  $\xi_2$ -axis these functions say  $Y(\xi_2)$  are similar to  $X(\xi_1)$  but  $\xi_1$ , a, m,  $\mu_m$  and  $\eta_m$  can be replaced by  $\xi_2$ , b, n,  $\mu_n$  and  $\eta_n$  respectively.

$$\begin{array}{l} U_1 = A_{11}e_9 + 2A_{16}e_{10} + A_{66}e_{8}, \quad \Psi_1 = \overline{s}_{66}e_{10} + 2\overline{s}_{16}e_9 + \overline{s}_{11}e_{11}, \quad V_1 = A_{26}e_{10} + (A_{66} + A_{12})e_9 + A_{16}e_{11}, \\ W_1 = s_{26}e_8 + (\overline{s}_{12} + 2s_{66})e_{10} + 3\overline{s}_{16}e_9 + s_{11}e_{11} + \overline{R}_{3}e_{12} + \overline{R}_{1}e_5, \quad \Phi_1 = \overline{s}_{26}e_8 + (\overline{s}_{12} + \overline{s}_{66})e_{10} + \overline{s}_{16}e_9, \\ U_2 = (A_{12} + A_{66})e_2 + A_{26}e_1 + A_{16}e_3, \quad V_2 = A_{22}e_2 + A_{66}e_4 + 2A_{26}e_3, \quad \Phi_2 = \overline{s}_{22}e_1 + \overline{s}_{66}e_3 + 2\overline{s}_{26}e_2, \\ W_2 = s_{22}e_1 + 3s_{26}e_2 + (s_{12} + 2s_{66})e_3 + s_{16}e_4 + \overline{R}_{2}e_5 + \overline{R}_{3}e_6, \quad \Psi_2 = (\overline{s}_{12} + \overline{s}_{66})e_3 + \overline{s}_{26}e_2 + \overline{s}_{16}e_4, \\ U_3 = -s_{26}e_{17} - \overline{R}_{3}e_{16} - 3s_{16}e_{14} - \overline{R}_{16} - (s_{12} + 2s_{66})e_1 - s_{11}e_{11}, \\ V_5 = -3s_{26}e_{14} - \overline{R}_{3}e_{13} - s_{16}e_{15} - (s_{12} + 2s_{66})e_{11} - \overline{R}_{2}e_5 - s_{22}e_1, \\ W_3 = -4\eta_{26}e_1 + 2(\zeta_{45} - 2\overline{R}_{6})e_5 - \overline{R}_{7}e_7 - 4\eta_{16}e_{11} + (\zeta_{55} - 2\overline{R}_{4})e_{13} - 2(\eta_{12} + 2\eta_{66})e_{14} - \eta_{11}e_{15} + (\zeta_{44} - 2\overline{R}_{5})e_{16} - \eta_{22}e_{17}, \\ \Psi_3 = -\overline{\eta}_{26}e_1 + (\zeta_{45} - \overline{R}_{6})e_5 - \overline{\eta}_{16}e_{11} + (\zeta_{55} - \overline{R}_{4})e_{13} - (\overline{\eta}_{12} + 2\overline{\eta}_{66})e_{14} - \overline{\eta}_{12}e_{17}, \\ U_4 = \overline{s}_{66}e_1 + 2\overline{s}_{16}e_2 + \overline{s}_{11}e_3, \quad V_4 = \overline{s}_{26}e_2 + (\overline{s}_{12} + \overline{s}_{66})e_3 + \overline{s}_{16}e_4, \\ W_4 = \overline{\eta}_{26}e_1 + (\overline{\eta}_{12} + 2\overline{\eta}_{66})e_2 + 3\overline{\eta}_{16}e_3 + \overline{\eta}_{11}e_4 + (\overline{R}_{6} - \zeta_{45})e_5 + (\overline{R}_{4} - \zeta_{55})e_6, \\ \Psi_4 = \eta_{56}^*e_{2} + 2\eta_{16}^*e_{3} + \eta_{11}^*e_{4} - \zeta_{55}e_6, \quad V_5 = \overline{s}_{22}e_{10} + \overline{s}_{66}e_{11} + 2\overline{s}_{26}e_{3}, \\ W_5 = 3\overline{\eta}_{26}e_{10} + (\overline{\eta}_{12} + 2\overline{\eta}_{66})e_9 + \overline{\eta}_{16}e_{11} + \overline{\eta}_{22}e_8 + (\overline{R}_{6} - \zeta_{45})e_5 + (\overline{R}_{5} - \zeta_{44})e_{12}, \\ W_5 = \eta_{3}^*e_{6}e_{1} + (\eta_{12}^* + \eta_{66}^*)e_{9} + \eta_{16}e_{11} + \overline{\eta}_{22}e_{8} + (\overline{R}_{6} - \zeta_{45})e_{5} + (\overline{R}_{5} - \zeta_{44})e_{12}, \\ W_5 = \overline{\eta}_{3}^*e_{6}e_{1} + (\eta_{12}^* + \eta_{66}^*)e_{9} + \overline{\eta}_{16}e_{11} + \overline{\eta}_{22}e_{8} + (\overline{R}_{6} - \zeta_{45})e_{5} + (\overline{R}_{5} - \zeta_{44})e_{12}, \\ W_5 = \eta$$

If  $x = \alpha_1 \xi_1$  and  $y = \alpha_2 \xi_2$ , we have:

$$(e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}) = \int_{0}^{a} \int_{0}^{b} (XY_{yyy}, X_{x}Y_{yy}, X_{xx}Y_{y}, X_{xxx}Y, XY_{y}, X_{x}Y)X_{x}Y \, dx \, dy,$$
  

$$(e_{8}, e_{9}, e_{10}, e_{11}, e_{12}) = \int_{0}^{a} \int_{0}^{b} (XY_{yyy}, X_{xx}Y_{y}, X_{x}Y_{yy}, X_{xxx}Y, XY_{y})XY_{y} \, dx \, dy,$$
  

$$(e_{7}, e_{13}, e_{14}, e_{15}, e_{16}, e_{17}) = \int_{0}^{a} \int_{0}^{b} (XY, X_{xx}Y, X_{xx}Y, X_{yy}, X_{xxx}Y, XY_{yy})XY \, dx \, dy,$$
  

$$(e_{18}, e_{19}, e_{20}) = \int_{0}^{a} \int_{0}^{b} \left(X_{x}^{2}Y_{y}^{2}, X^{2}Y_{yy}^{2}, X_{xx}^{2}Y^{2}\right) \, dx \, dy.$$

,

## Appendix B

$$\begin{split} \Delta_{nnn} &= \Delta_{11} U_3 + \Delta_{21} V_3 + \Delta_{41} \Psi_3 + \Delta_{51} \Phi_3 - \Delta_0 W_3, \\ \Delta_{1nnn} &= \Delta_0 \overline{W}_3 - \Delta_{12} U_3 - \Delta_{22} V_3 - \Delta_{42} \Psi_3 - \Delta_{52} \Phi_3, \\ \Delta_0 &= \begin{vmatrix} U_1 & V_1 & \Psi_1 & \Phi_1 \\ U_2 & V_2 & \Psi_2 & \Phi_2 \\ U_4 & V_4 & \Psi_4 & \Phi_4 \\ U_5 & V_5 & \Psi_5 & \Phi_5 \end{vmatrix}, \quad \Delta_{11} &= \begin{vmatrix} W_1 & V_1 & \Psi_1 & \Phi_1 \\ W_2 & V_2 & \Psi_2 & \Phi_2 \\ W_4 & V_4 & \Psi_4 & \Phi_4 \\ W_5 & V_5 & \Psi_5 & \Phi_5 \end{vmatrix}, \quad \Delta_{12} &= \begin{vmatrix} \overline{W}_1 & V_1 & \Psi_1 & \Phi_1 \\ \overline{W}_2 & V_2 & \Psi_2 & \Phi_2 \\ U_4 & W_4 & \Psi_4 & \Phi_4 \\ U_5 & W_5 & \Psi_5 & \Phi_5 \end{vmatrix}, \quad \Delta_{22} &= \begin{vmatrix} U_1 & \overline{W}_1 & \Psi_1 & \Phi_1 \\ U_2 & \overline{W}_2 & \Psi_2 & \Phi_2 \\ U_4 & \overline{W}_4 & \Psi_4 & \Phi_4 \\ U_5 & \overline{W}_3 & \Psi_5 & \Phi_5 \end{vmatrix}, \quad \Delta_{41} &= \begin{vmatrix} U_1 & V_1 & W_1 & \Phi_1 \\ U_2 & V_2 & W_2 & \Phi_2 \\ U_4 & V_4 & W_4 & \Phi_4 \\ U_5 & V_5 & W_5 & \Phi_5 \end{vmatrix}, \quad \Delta_{51} &= \begin{vmatrix} U_1 & V_1 & \Psi_1 & W_1 \\ U_2 & V_2 & \Psi_2 & W_2 \\ U_4 & V_4 & \Psi_4 & \Phi_4 \\ U_5 & V_5 & \Psi_5 & \Phi_5 \end{vmatrix}, \quad \Delta_{52} &= \begin{vmatrix} U_1 & V_1 & \Psi_1 & \overline{W}_1 \\ U_2 & V_2 & \Psi_2 & \overline{W}_2 \\ U_4 & V_4 & \overline{W}_4 & \overline{W}_4 \\ U_5 & V_5 & \overline{W}_5 & \overline{W}_5 \end{matrix}, \quad \Delta_{51} &= \begin{vmatrix} U_1 & V_1 & \Psi_1 & W_1 \\ U_2 & V_2 & \Psi_2 & W_2 \\ U_4 & V_4 & \Psi_4 & \overline{W}_4 \\ U_5 & V_5 & \Psi_5 & \overline{W}_5 \end{matrix}, \quad \Delta_{52} &= \begin{vmatrix} U_1 & V_1 & \Psi_1 & \overline{W}_1 \\ U_2 & V_2 & \Psi_2 & \overline{W}_2 \\ U_4 & V_4 & \Psi_4 & \overline{W}_4 \\ U_5 & V_5 & \Psi_5 & \overline{W}_5 \end{matrix}, \quad \Delta_{51} &= \begin{vmatrix} U_1 & V_1 & \Psi_1 & W_1 \\ U_2 & V_2 & \Psi_2 & W_2 \\ U_4 & V_4 & \Psi_4 & \overline{W}_4 \\ U_5 & V_5 & \Psi_5 & \overline{W}_5 \end{matrix}, \quad \Delta_{52} &= \begin{vmatrix} U_1 & V_1 & \Psi_1 & \overline{W}_1 \\ U_2 & V_2 & \Psi_2 & \overline{W}_2 \\ U_4 & V_4 & \Psi_4 & \overline{W}_4 \\ U_5 & V_5 & \Psi_5 & \overline{W}_5 \end{matrix}, \quad \Delta_{51} &= \begin{vmatrix} U_1 & V_1 & \Psi_1 & W_1 \\ U_2 & V_2 & \Psi_2 & \overline{W}_2 \\ U_4 & V_4 & \Psi_4 & \overline{W}_4 \\ U_5 & V_5 & \Psi_5 & \overline{W}_5 \end{matrix}, \quad \Delta_{52} &= \begin{vmatrix} U_1 & V_1 & \Psi_1 & \overline{W}_1 \\ U_2 & V_2 & \Psi_2 & \overline{W}_2 \\ U_4 & V_4 & \Psi_4 & \overline{W}_4 \\ U_5 & V_5 & \Psi_5 & \overline{W}_5 \end{matrix}, \quad \Delta_{51} &= \begin{vmatrix} U_1 & V_1 & \Psi_1 & \overline{W}_1 \\ U_2 & V_2 & \Psi_2 & \overline{W}_2 \\ U_4 & V_4 & \Psi_4 & \overline{W}_4 \\ U_5 & V_5 & \Psi_5 & \overline{W}_5 \end{matrix}, \quad \Delta_{51} &= \begin{vmatrix} U_1 & V_1 & \Psi_1 & \overline{W}_1 \\ U_2 & V_2 & \Psi_2 & \overline{W}_2 \\ U_3 & V_4 & V_4 & \overline{W}_4 & \overline{W}_4 \\ U_5 & V_5 & \Psi_5 & \overline{W}_5 \end{matrix}, \quad \Delta_{51} &= \begin{vmatrix} U_1 & V_1 & W_1 & W_1 \\ U_2 & V_2 & W_2 & \overline{W}_2 \\ U_3 & V_4 & W_4 & \overline{W}_4 & \overline{W}_4 \\ U_5$$

## Appendix C

$$\begin{split} &k_1 = (k_{22}L_3 + k_{24}L_5 + k_{25}L_7 + k_{12}L_1 + k_{23})L_3 + (k_{44}L_5 + k_{14}L_1 + k_{34} + k_{45}L_7)L_5 + (k_{11}L_1 + k_{15}L_7 + k_{13})L_1 + k_{33} \\ &+ (k_{55}L_7 + k_{35})L_7, \end{split} \\ &k_2 = (k_{24}L_6 + k_{12}L_2 + k_{25}L_8 + 2k_{22}L_4)L_3 + (k_{24}L_5 + k_{25}L_7 + k_{12}L_1 + k_{23})L_4 + (k_{45}L_8 + k_{14}L_2 + 2k_{44}L_6)L_5 \\ &+ (k_{13} + k_{15}L_7 + 2k_{11}L_1)L_2 + (k_{14}L_1 + k_{34} + k_{45}L_7)L_6 + (2k_{35}L_7 + k_{15}L_1 + k_{35})L_8, \end{aligned} \\ &k_3 = (k_{22}L_4 + k_{24}L_6 + k_{12}L_2 + k_{25}L_8)L_4 + (k_{11}L_2 + k_{14}L_6 + k_{15}L_8)L_2 + (k_{45}L_6 + k_{55}L_8)L_8 + k_{44}L_6^2 + \mu_{3}e_7, \cr &k_4 = I_1(L_1^2e_{12} + L_3^2e_{6}) + I_7\gamma^2(e_6 + e_{12}) + I_3^*(L_5^2e_{6} + L_7^2e_{12}) + 2I_2^*e_{5}(L_1L_5 + L_3L_7) + 2\gamma I_5^*(L_8e_{12} + L_6e_{6}) + 2I_2^*e_{5}(L_2L_5 + L_4L_7 + L_3L_8), I_3^* = I_7\gamma^2 + 2I_5\gamma + I_5, \cr &k_6 = I_1(L_4^2e_{6} + L_2^2e_{12}) + I_3^*(L_5^2e_{6} + L_7L_8e_{12}) + 2\gamma I_4e_{5}(L_2 + L_1L_6 + L_4) + 2\gamma I_5^*(L_8e_{12} + L_6e_{6}) + 2I_2^*e_{5}(L_2L_5 + L_4L_7 + L_3L_8), I_3^* = I_7\gamma^2 + 2I_5\gamma + I_5, \cr &k_{14} = e_{3}S_{11} + (s_{12} + 2s_{6}e_{6}) + (s_{14} + 2e_{18})s_{16} + e_{19}s_{25} + \overline{R}_{12}e_{16}, \cr &k_{14} = e_{3}S_{11} + (s_{12} + 2s_{6}e_{6}) + (s_{14} + 2e_{18})s_{16} + e_{19}s_{25} + \overline{R}_{12}e_{16}, \cr &k_{14} = e_{3}S_{11} + (s_{12} + 2s_{6}e_{6}) + (s_{14} + 2e_{18})s_{16} + e_{19}s_{25} + \overline{R}_{12}e_{16}, \cr &k_{14} = e_{3}S_{11} + (s_{12} + 2s_{6}e_{6}) + (s_{14} + 2e_{18})s_{16} + e_{19}s_{26} + e_{3}\overline{R}_{26}, \cr &k_{22} = A_{2}e_{3} + \frac{1}{2}(A_{2}e_{11} + s_{13}A_{6}e_{20}), \qquad &k_{15} = e_{10}(\overline{R}_{12} + \overline{S}e_{6}) + e_{18}\overline{R}_{6} + e_{5}\overline{S}_{45}, \cr &k_{23} = e_{10}s_{22} + e_{14}A_{112} + e_{3}A_{11}^* + e_{10}A_{16}^* + e_{10}\overline{S}_{56}, \cr &k_{23} = e_{10}s_{22} + e_{14}A_{112} + e_{3}A_{11}^* + e_{10}A_{12}^* + e_{10}A_{16}^* + e_{10}\overline{S}_{56}, \cr &k_{23} = e_{10}\overline{S}_{12} + \overline{S}e_{16} + \frac{1}{2}\overline{R}e_{17} + 2\overline{R}e_{16}, \cr &k_{14} = e_{12}(e_{10}A_{11} + e_{14}A_{112} + e_{14}A_{12} + e_{23}A_{16}^* + e_{15}\overline{S}_{55}, \cr &k_{23}$$

$$\begin{split} a_1 &= -4k_6l^6, \quad a_2 = 4k_6l^4(l+2k_3^3\omega^2), \quad a_3 = k_2k_6l^2(k_2l^2+4k_3\omega^2l+4k_3^2\omega^4), \\ a_4 &= -4k_3^3(2k_3\omega^2+k_2l), \quad a_6 = -2k_1, \quad a_5 = k_3^3(4k_3k_1-k_2^2), \quad a_7 = -4k_3k_6l^4, \\ a_8 &= 21(k_3^2k_5l^3-k_2k_3k_6l^3-k_3^3l^2), \quad a_9 = 2k_3^2k_6l^2, \quad a_{10} = 2k_3^2(2k_3^2-k_3l+k_6l), \\ a_{11} &= \frac{1}{2}k_3(4k_3^3k_4+k_2^2k_6-2k_2k_3^2k_5), \quad a_{12} = 4k_3^4, \quad a_{13} = 2k_6l^5(k_2+2k_3l\omega^2), \\ a_{14} &= -a_1, \quad a_{15} = k_3^2a_7, \quad a_{16} = 2k_3^2l^2(k_5l-2k_2k_6l-2k_6\omega^2-2k_3), \\ a_{17} &= e_2k_3^2k_5l^2+2k_3^3k_5l\omega^2-k_2^2k_3k_6l^2-2k_2k_3^2l\omega^2k_6-4k_3^4\omega^2-2k_2k_3^3l. \end{split}$$

#### References

- [1] O'Donoghue PE, Atluri SN. Control of dynamic response of a continuum model of a large space structure. Comput Struct 1986;23:199-209.
- [2] Turvey GJ, Marshall IH. Buckling and postbuckling of composite plates. Chapman & Hall; 1995.
- [3] Rao SS. Optimum design of structures under shock and vibration environment. Shock Vib Digit 1989;21:3-15.
- [4] Yang JN, Soong TT. Recent advances in active control of civil engineering structures. Probab Engng Mech 1988;3:179-88.
- [5] Miller RK, Masri SF, Dehganyer TJ, Caughey TK. Active vibration control of large civil structures. ASCE J Engng Mech 1988;114:1542–70.
   [6] Adali S, Richter A, Verijenko VE. Minimum weight design of symmetric angle-ply laminates with incomplete information on initial imperfections. J Appl Mech 1997;64:90–6.
- [7] Adali S, Sadek IS, Sloss JM, Bruch Jr JC. Distributed control of layered orthotropic plates with damping. Optimal Control Appl Methods 1988:9:1–17.
- [8] Muc A, Krawiec Z. Design of composite plates under cyclic loading. Compos Struct 2000;48(1-3):139-44.
- [9] Bruch JC, Adali S, Sloss JM, Sadek IS. Optimal design and control of cross-ply laminate for maximum frequency and minimum dynamic response. Comput Struct 1990;37:87–94.
- [10] Langthjem MA, Sugiyama Y. Optimum design of cantilevered columns under the combined of conservative and nonconservative loads. Part II: The damped case. Comput Struct 2000;74:399–408.
- [11] Walker M. Optimal design of symmetric laminates with cut-outs for maximum buckling load. Comput Struct 1999;70:337-43.
- [12] Sussmann HJ, Willems JC. 300 years of optimal control: from the brachystochrone to the maximum principle. IEEE Control Syst 1997:32-44.
- [13] Duvaut G, Terrel G, Léné F, Verijenko VE. Optimization of fiber reinforced composites. Compos Struct 2000;48(1-3):83-9.
- [14] Ledzewicz U. Extension of the local maximum principle control problem. J Optim Theory Appl 1993;77(3):661-80.
- [15] Fares ME, Zenkour AM. Buckling and free vibration of non-homogeneous composite cross-ply laminated plates with various plate theories. Compos Struct 1999;44:279–87.
- [16] Reddy JN. Mechanics of composite materials and structures. Theory and analysis. Florida: CRC Press; 1997.
- [17] Zenkour AM, Fares ME. Thermal bending analysis of composite laminated cylindrical shells using a refined first-order theory. J Therm Stresses 2000;23:505–26.
- [18] Fares ME, Youssif YG, Alamir AE. Optimal design and control of composite laminated plates with various boundary conditions using various plate theories. Compos Struct 2002;56:1–12.
- [19] Youssif YG, Fares ME, Hafiz MA. Optimal control of the dynamic response of anisotropic plate with Various Boundary Conditions. Mech Res Commun 2002;28(5):525–34.
- [20] Reddy JN, Liu CF. A higher-order shear deformation theory of laminated elastic shell. Int J Engng 1985;23(3):319-30.
- [21] Letov AM. Analytical design of controllers. Aftamateka and Telemchanika 1960;21(4-6), 1961;22 (4).
- [22] Gabralyan MS. About stabilization of mechanical systems under continuous forces, YGU. Yervan 1975;2:47-56.