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Abstract: The problem of minimising the dynamic response of an anisotropic rectangular plate 
with minimum possible expenditure of force is presented for various cases of boundary conditions. 
The plate has a principal direction of  anisotropy rotated at an arbitrary angk' relative to the 
coordinate axes. This orientation angle has been taken as an optimisation design parameter. The 
control problem is tbrmulated as an optimisation problem by using a performance index, which 
comprises a weight sum of the control objective and penalty function of the control force. The 
explicit solutions for the closed-loop distributed control function is obtained by means of Liapunov- 
Belhnan theory. To assess the present solution, numerical results are presented to illustrate the 
effect of anisotropy ratio, orientation angle, aspect ratio and botmdary conditions on the control 
process. 
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1. Introduction 

The rapid development of various industrial fields requires new materials thai: can serve 

useful functions under certain conditions. In aerospace industry and many other engineering 

applications, the suppression of excessive vibrations .occurring in large structures represents one of 

the most pressing and difficult problems facing structural designers. An effective means of 

suppressing excessive vibrations is by active structural control. Thus, there is need for new light 

materials possessing a high degree of flexibility and with very low natural dampirtg. These factors 

motivated the development of more accurate tools of  analysis and rigorous design methods. 

Therefore, the optimal control problems of dynamical systems have long been a main subject of 

maJly studies and up-to-date lists of publications in this area is given in survey articles [1-5]. 

Most recently, the strong interaction between structural control and design optimisation has 

been recognized. As a result, simultaneous design and control has been the subject of several 

research studies with a view towards integrating optimal design and active control in a single 

formulation. For instance, in Refs. [6-11], the design control problem was formulated as a 

constrained optimisation problem. 

A series of publications has been concerned with the fundamental considerations of these 

approaches and their applications to different dynamical systems. Sloss and others [ 12,13] 

presented a maximum principle for the optimal control of a general class of dynalnical systems with 

distributed parameters. Wilhin the theoretical framework of these studies, optimal distributed 

control results were obtained for membranes by Sadek and Adali [14], for thick beam,; by Sadek 

and others [15-17], for continuous beams by Sadek et a l. [18], for M indlin-Timoshenko plates by 
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Sadek et. al. [19] and tbr orthotropic plates by Adali et al. [20]. Other studies may be found in [21- 

26]. For these studies, however, there have been considerably few papers concerned with 

anisotropic structures with various boundary conditions. 

The objective of the current work deals with the optimal control of the dynamic response of an 

anisotropic rectangular plate possessing a principal direction of anisotropy rotated at an arbitrary 

angle relative to the coordinate axes. This orientation angle may be taken as optimisation design 

parameter. Various cases of boundaly conditions are considered. The present control problem is the 

minimisation of the dynamic response of a damped plate with the minimum possible expenditure of 

force. Control over the plate is exercised by distributed forces, which translate into force in the 

actual implementation of the control mechanism. The dynamic response of the anisotropic plate 

comprise its deflection and velocity which constitute multiple objectives of the control problem 

together with the expenditure of force. The dynamic response is related to the energy of the 

structure, which is subject to initial disturbances. A quadratic functional of the dynamic response is 

specified as the control performance index. The expenditure of force is limited by attaching a 

functional of force to the objective functional as a penalty term. The necessary and sufficient 

conditions for optimal stabilization in Liapunov-Bellman sense [27] are used to determine the 

control force and deflections. Numerical example is given to study influences of anisotropy ratio, 

orientation mlgle, aspect ratio, and boundary conditions on control process. 

2. Formulation of tile problem 

Consider an mfisotropic rectangular plate of  length a, width b, and l:hickness h .The 

mid-plane of  the plate coincides with xy- plane and normal to z- axis as shown in figure 1. 

J 

Figure 1. The plate with fibers orientated at an arbitrary angle 0 relative to the coordinate system. 
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The material of tile plate is assumed to possess a principal direction of elasticity rotated at 

an angle 0 relative to x- direction. Let the plate be subjected to distributed force q(x, y, t) act 

on the upper surface of the plate. 

The fundamental differential equation governing the motion of the plate is given by [28]: 

tgh(;~+O[l~a;,xm+2Di2w,z,.,y +O;2~'¢',)yyy +4D~6w,x~. ~.' +4(Di6w,.w,y+O;6w,.,m ')=q' (I) 

where w is the plate deflection in the z- direction, p is the material density, the superposed 

dol denotes differentiation with respect to time and ( ),~- denotes partial differentiation with 

respect to corresponding coordinate, D~ = B~h3ll2 are the rigidities of the plate, which are 

related to the fundamental elastic constants B j are presented in [28]: 

The present control problem accounts for various cases of bounda<y conditions at 

edges, i.e., when the plate edges are Simply Supported (S), or Clamped (C) or Free (/9, or 

when mixed of these boundary conditions are prescribed over edges. These boundary 

conditions on edges perpendicular to x-axis (for example): 

C: w=wx =0, 

S : w : D[,w,.= + D,'2w,., + 2D[,w.~, :: O. 

F: D(,w.~,+Dj'2w.~+2D[~w.,,.=D[,w.~+3D'~w~> +(D[2+2D£6)w.,~.+O~6w~,,.=O. (2) 

Also, we assume that the plate is subjected to thefollowing initial conditions: 

w(x,y,O)=c/(x,y), *(x,y,O)=¢(x,y).  (3) 

3. Optimal control problem 

The objectives of the present study are to determine the optimal control force q° and 

optimal design variable 0opt to minimise the dynmnic response of the lamina in a specified 

time 0 _< t _< r _< co. the dynamic response of the plate is measured by a cost functional 

related to the energy of the system. The strain and kinetic energies of the plate nmde up of 

linear elastic material, respectively are [28] : 

d,(q,O)= 1 ;,w2~.,+ 2D[2w..=w,,.+ D;2 w."~, + 4D;6w.2 + 4(D:w ~., + D;6w,,,~v,y]dxdydt, (4) 
o o 

g[; 4(q,O)= ½ph (S) 

The mathematical formulation of the cost functional may be chosen as: 

J(q, O) = ~jdj + ~2J2 + ~3J3, (6) 
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where ~, > 0, (i = 1, 2, 3) are constant weighting factors and the functional J3 is a penalty 

term involving the control function q ~ L  2, where L 2 denotes the set of all bounded square 

integrable functions on {0< x _<a, 0_<y _<b, 0_< t _< r_< oo}, and given by: 

b a 

fol I 
o 0 

Thus, the dynamic response of the plate is expressed as functionals of w, its spatial 

derivatives and w given by ./1 and. J2 Then, the present multiobjective control problem is to 

determine: firstly, the optimal control function q° from the minimisation condition of the 

functional J and secondly, the optimal orientation angle Oop, which lninimising the total 

elastic energy .]12 (=.I1+.I2). 

4. Solution procedure 

Under the above specific conditions, we can expand the displacement functkm w and 

the control function q in the following double series: 

w=E <,o(,)x(x>(y), q = Z oo,,(t)x(x>(y), (8) 
m,n  m,n  

where W.,,, and Q ..... are unknown functions of time, X (x) and Y (y) are continuous 

orthonormed eigenfunctions which satisfy the boundary conditions given in (2) and 

represent approximate shape of the deflected surface of the free vibrating plate. These 

functions for the different cases of boundary conditions take the following forms [29]: 

SS : A'(x) = sin AtmX , F~ = m~r/a.  

CC: X(x)= sin At,,,x -sinh At, x - q,. (cos At,.x -cosh,u"x), 

tl," : (sin p.,a - sinh p,,,a)/(cos/t,.a - cosh At.,a), At,,, = (m + 0.5),z / a .  

cs: x(x)= sin Atmx- sinh At,.x-..,(cos,,,,,x- cosh ,mx), 

,],,:(sinAt.,a+sinhAt, a)/(cosAt,.a+coshAt.,a), A t , n=(m+O.25) /a .  

CF:  X(x) :  sin At,,,x -sinh At.,x - r/., (cos At,.x -cosh At,.x), 

q,,:(sinAt,,a+sinhAt,,,a)/(cosAt, a+coshAt,,a), At, :1.875/a,  At2=4.694/a, 

At3 = 7.855/a, At4 = 10.996/a and At,,, = (m-0.25)n'/a for m >_ 5. 

Substituting formulae (8) into equation (1), then, multiplying both sides of the resulting equation 

by X(x) Y(y), and integration over the domain of solution, we get: 

1 
ffl , + (o2.W.,,, : ~ p Q  .... (9) 
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2 ' [z,,',r, + 2~;6)~3 + L,;2¢,], ( lo )  (o,,,,, = 2~,~i~ + 2(D,'~ + 4n ; j4  + 
hI6 p 

Substituting the relations (8) into expressions (4) and (5), we can easily get: 
7) m 

m = l  n = l  0 m=l n = l  0 

e, = ½~,(D,'/v +2D;21 , +20;219 +4D~,,/,o +4DI'61,, + 4 D ; j n ) .  e2 = ½hp~216 ' 

(11'I2'13'14'I5'16) = f ~ (X,xa~xY, X,x.u':v,X,xaY, k),,X,xY,).~3,,XY,,))39.,XY~rdxdy , 
o o 

(,,,,,,~,,,o,~,,,,,2)= f' ((~ * ~ ~ *¢.:, '2r'  * ,  " . . . .  c . ~ > + .  j ~ ,.~ , .- ~-,,>, ~ .... X . Y v Y  X . X  . . . . .  
0 0 

Using the expressions (7) and (11) in (6), the functional J takes the form: 

J - - Z Z J  ..... 
,.=, ,,:, (12) 

J=., = S-(etW,2..+e2l~2,,+,Q,o..)dt , e  ' e3 = ~3I~. (13) 
0 

To minimise the functional J, we apply Liapunov-Bellman theory [27] that gives the 

minimisation condition in the form: 

mini 0V~. W.,, Ov.,,, 1 
o=ooLaw., ° + a ~ , .  & , , + y  .... 

~ O ~, (14) 

where V,,m is a Liapunov ftmction and may be chosen in the form: 

V= = (p.,.W,~,, + 2g.,, W,,,, 14~ + rl.,.W~,.,'2 
(15) 

)-,.,,is the integrand of (13), ~p~., e .  and ,7~..are parameters chosen according to the 

condition that the Liapunov function Vm,, is positive definite. Then, from expressions 

(13)-(15), we can obtain the opthnal control force in the form: 

Q,~,:. _ p-lhe3 (e.,,,W,,~, + r/,,,,,l~,,,,,,), (16) 

substituting equations (9) and (16) into (14), and equating the coefficients of  W,,~,,, W,,~. and 

W,,,fi~,,,,, by zero, we get a system of equations, the general solution of this system is: 

e ( ~ -.Jco,.. + e , "  / e l ) .  '1 .... = ~/(2e,.o + < 

~p.,. = *,.,,(co~,,, +. , . . / e~ ) ,  e4 : p2h2e,.  (17) 

The signs before the square roots are chosen according to the condition on Liapunov 

functions. On the other hand, we can rewrite the equation (9) as follows: 
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oemn 
w - ~;~'' , f~o = a ~ . +  • (18) ~V",, +Ctm,,l~,,,, + ~  ......... = 0 , Ct .... h2p2e3 hZp2e3 

The solution of equation (18) for which 2f~,,,, >a,.,, is given by: 

W,:,, - .  ,:2[., :,, tx+ ( )] v z 2 ' ' (19) =e .... ~.,.cos~..,. ) y,.,,sin v,.,,t , .,. =£2,.,,,, - T c t  ..... 

where f l . . ,and  ?',.,,are unknown coefficients which may be obtained from the initial 

conditions (3) by expanding it in series, then: 

4 ; : (  
ct...fl,.° + 2A.,. (fl,..,A..)= abe° 2 o o Y '"  - 2v  ' - -  ~u, ~b )XYdxdy.  (20) 

From the above expressions we can obtain the optimal control force and the total 

elastic energy for various boundary conditions. 

5 .  N u m e r i c a l  r e s u l t s  a n d  d i s c u s s i o n  

In this section, numerical results lbr the optimal deflections w °, force qO and the total 

elastic energy J12 are presented when the plate is orthotropic, In this case, the engineering 

constants are introduced instead of the elastic constants from the relations: 

Et vI2E2 E2 
B l l  --  , B I 2  = - - ,  B22  - - - ,  B 66  = G I 2  , BI6 = B2~ ' = 0, (21) 

I --  |/12V21 I - -  VI2| :21 1 -- VI2V21 

where El are Young's moduli; v,, are Poisson's ratios and G!/ are shear moduli. The 

Poisson's ratios and Young's moduli are related by the reciprocal relations 

v, ,E,  = v , , E  ,(i, j = 1, 2). The initial conditions (3) are chosen in the form • 

w ( x , y , O ) = O . 2 X ( x ) r ( y ~  ,i, (x,y,0)- 0. (22) 

We introduce the dimensionless quantities ~ = x / a .  ~ = y / b ,  

ht 
: = , , - ° =  T:-dT~/G/p ( 2 3 )  

F -  

I n  all calculations, unless otherwise stated, the following parameters are used, 

E l ~ E 2 = 4 0 ,  G I 2 / E 2 = 0 . 5 ,  vl2=0.25, ~1=~2=1, 53=0.1, 

which are typical of carbon fiber reinforced plastic. All curves for displacement and force 

functions are given at the midpoint ~ = 0.5, y = 0.5,and the four letters of the boundary 

conditions ( S S C C ,  S C C F  . . . .  ,etc.) with its order from left to right indicate the kind of 

fixing at the plate edges x=O, x=a,  y=O and y = b ,  respectively. 

"Fable 1 gives values of the optimal orientation angle Oor,, by degrees, at which the total 

elastic energy J12 takes minimmn values for different cases of boundary conditions and for 
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different values of orthotropy ratio El/E2 and aspect ratio a/b. Note that, the orientation 

angle 0 which gives the minimum energy strongly depends on the material and geometric 

parmneters of the plate and on the boundary conditions. Fig. 2 shows curves of elastic 

energy plotted against the orthotropy ratio EyE2 for the cases CSCC and CCCF. Observe 

that, the control process using the orientation angle 0 considerably reduces the elastic 

energy of the plate as compared to non-optimal one. Moreover, the advantage of this type of 

control becomes more obvious in plates with high orthotropy ratio E/E: .  

Fig. 3 shows elastic energy curves plotted against the aspect ratio cub for the cases 

SSCC mad SSSS. These curves indicate that in short plates, a/b < 2, the effect of the 

orientation angle 0 on the optimisation control process plays more significant role in 

minimising the dynamic response of the plate. Fig. 4 contains curves of the elastic energy 

J12 against the time and aspect ratio a/b. The behavior of the damped deflection of the plate 

with respect to time is studied in Fig. 5, for cases CCCC and CFCF. Figs 4 mad 5 confirm 

the previous discussion for all cases of boundary conditions. 

Figs 6 and 7 show behavior of the dimensionless optimal control tbrce ~-o with respect 

to lime. These figures confirm that the control by the orientation angle 0 not only plays an 

efficient role in minimising the dynamic response, but it also contributes significantly in 

reducing the expenditure of the used force for all cases of boundary conditions. Thus, the 

present simultmleous control using design parameters and a distributed force is considered 

an effective mean lbr clamping the dynamic response. 

a/b EI/E2 SSSS SSCS SSCC CSCC CSCS CCCC CCCF SSCF CFCF CSCF 

0.8 

1.25 

1.5 

2 25.6 45 62 39.7 18.9 0 0 0 29 8.1 
10 35 45 54 42.3 31.7 0 0 0 20 8.7 
40 35.5 45 53 42.6 32.5 0 0 0 19 8.9 

2 45 62.4 90 90 45 45 0 0 55 8.6 
10 45 54.8 90 64.4 45 45 0 0 68 9.2 
40 45 54.4 90 62.9 45 45 0 0 70 9.5 

2 63.5 90 90 90 71.1 90 0 0 63.5 8.8 
1(1 55 84.6 90 90 58.3 90 0 0 69.5 9.3 
40 54.5 80.1 90 90 67.5 90 0 0 70 9.7 

2 90 90 90 90 90 90 0 0 66.5 8.9 
10 76 90 90 90 90 90 0 0 70 9.1 
40 74 90 90 90 90 90 0 0 70 9.5 

2 90 90 90 90 90 90 0 90 70 9.5 
10 90 90 90 90 90 90 0 90 71 8.3 
40 90 90 90 90 90 90 0 90 70.5 8.6 

Table 1. Values of optimal orientation angle Oop, which rnininfising total elastic energy against E:/~2 zmd a/b. 
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