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Abstract

A multiobjective optimization problem is presented to determine the optimal layer thickness and optimal closed loop

control function for a symmetric cross-ply laminate subjected to thermomechanical loadings. The optimization pro-

cedure aims to maximize the critical combination of the applied edges load and temperature levels and to minimize the

laminate dynamic response subject to constraints on the thickness and control energy. The objective of the optimization

problem is formulated based on a consistent first-order shear deformation theory without introducing a shear cor-

rection factor. The dynamic response is measured as the sum of the total elastic energy of the laminate and a penalty

term involving a closed loop control force. Laipunov–Bellman theory is used to obtain solutions for the controlled

deflections and optimal control force. The layer thickness is taken as a design variable, and is presented as a function of

the number of layers. A numerical study is made for simply supported symmetric laminates with an odd number of

layers to show the advantages of the present control optimization. The study indicates that the present control opti-

mization is active with most laminates cases for all values of aspect ratio, number of layers, orthotropy ratio, thermal

expansions ratio and thickness ratio.
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1. Introduction

Temperature changes frequently represent a significant factor of failure of composite structures sub-

jected to sever environmental loads. The thermal stresses accompanying the non-uniform unsteady heating

cause thermal fatigue and considerable plastic strains leading to complete or progressive destruction of the

composite structures. Furthermore, the repeated action of the thermal stresses in some composite laminated
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plates and shells leads to debonding of layers, longitudinal cracks, as well as, a thermal buckling in

composite thin walled members. However, composite materials offer advantages over conventional mate-

rials, and they are more thermally stable than metals. To take advantage of the full potential of composite

materials, structural analysts and designers must have extremely accurate tools of the analysis and design
methods at their disposal. Optimization control is considered as the most effective mean for improving the

performance of these composite structures to serve some functions under certain conditions.

A series of publications has appeared and concerning the design optimization and vibration control of

large space structures. Many studies treated the design optimization and structural control as separate

issues (see e.g. O�Donoghue and Atluri, 1986; Turvey and Marshall, 1995; Rao, 1989; Yang and Soong,

1988; Adali, 1984). In other studies, integrated approaches for the simultaneous design and control opti-

mization were presented using a unified formulation (see e.g. Adali and Nissen, 1987; Rao, 1988; Salama

et al., 1988; Cha et al., 1988). Rao et al. (1988) presented a multiobjective optimization approach with
constrained imposed on the relevant quantities for truss and beams structures. Mesquita and Kamat (1988)

used sequential structural and control optimization procedure for a stiffened composite laminate to im-

prove a control performance index taking the fiber orientations and stiffener areas as design variables. More

recent studies on this subject are available in the literature (Adali and Duffy, 1990a,b; Adali et al., 1991,

1997; Sloss et al., 1992; Sadek et al., 1993; Lee et al., 1999; Muc and Krawiec, 2000; Fares et al., 2002a,b;

Wang and Huang, 2002; Youssif et al., 2001).

One inherent feature of composite laminates is that the transverse shear modulus is lower than the in-

plane moduli and, as a result, the influence of transverse shear deformations becomes significant as the
plate thickness increases. So, the application of the classical plate theory (CPT) which neglects the

transverse shear effects, to composite laminates could leads to as much as 40% or more errors in the opti-

mum values of the design and control variables (see Fares et al., 2002a,b). However, there are few studies,

which treated the optimization control problems for composite laminates based on shear deformation

theories.

The current work deals with the design and control optimization of composite laminates subjected to

varying temperature distributions and in-plane compressive loadings. The design and control objectives of

the problem are to maximize the thermal buckling, and to minimize the dynamic response with minimum
expenditure of control force. The design and control objectives are formulated based on a consistent first-

order shear deformation theory. This theory accounts for Reissner–Mindlin�s displacement assumptions

and stresses consistent with the surface conditions on the top and lower laminate surfaces (see Fares and

Zenkour, 1999). So, the rationale for the shear correction factors used in other first-order theories is ob-

viated. The dynamic response is expressed as the sum of the total elastic energy of the laminate and a

penalty term involving the control force. Comparative examples are given for cross-ply symmetric lami-

nates subject to temperature distribution varying linearly through the thickness and varying sinusoi-

dally with respect to the in-plane coordinates. Also, the laminate edges are simply supported and loaded
with biaxial stresses. The thickness of layers is taken as design variable which is presented as a function

of the number of layers. The effectiveness of the present optimization design and control approach is

examined.
2. Theoretical formulation

Consider a fiber reinforced rectangular laminate of constant thickness h occupying the space 06 x6 a;
06 y6 b; �h=26 z6 h=2. The laminate is composed of N anisotropic layers stacking in cross-ply lami-

nation scheme such that each layer possesses one plane of elastic symmetry parallel to its mid-plane. The

laminate is subjected to an temperature distribution varying linearly through the thickness and varying
arbitrarily with respect to the in plane coordinates x and y,
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T ðx; y; zÞ ¼ T0ðx; yÞ þ
z
h
T1ðx; yÞ: ð1Þ
Further, the laminate edges are loaded with biaxial compressions P1 and P2 (see Fig. 1). A control force

qðx; y; tÞ distributed over the upper surface of the laminate is taken to damp the dynamic response with the

following initial disturbances:
wðx; y; 0Þ ¼ A�ðx; yÞ; _wwðx; y; 0Þ ¼ B�ðx; yÞ: ð2Þ

In general, the material properties and the thermal expansion coefficients depend upon the temperature

level T (see Noor et al., 1994). But, for moderate increase in temperature, material properties may be

considered independent of temperature. Here, we confine the study to materials with temperature-inde-

pendent elastic properties. In addition, the assumed temperature does not exceed the buckling temperature.

Consequently, the present problem may be formulated within the framework of linear elasticity theory.

The present formulation is based on a consistent first-order shear deformation theory that includes

Ressiner–Mindlin�s displacement assumptions and stresses consistent with the surface conditions on the top

and lower laminates surfaces. So, the rationales for the shear correction factors used in other first-order

theories are obviated. The displacement field is of the form:
u1 ¼ uþ zw; u2 ¼ vþ z/; u3 ¼ w; ð3Þ

where ðu1; u2; u3Þ are the displacements along x, y and z directions, respectively, ðu; v;wÞ are the displace-

ments of a point on the mid-plane, and w and / are the shear rotations due to bending. The infinitesimal

strains associated with the displacements (3) are given by:
e1 ¼ e01 þ zw;x; e2 ¼ e02 þ z/;y ; e3 ¼ 0; e4 ¼ w;y þ /; e5 ¼ w;x þ w; e6 ¼ e06 þ ze16;

e01 ¼ u;x; e02 ¼ v;y ; e06 ¼ v;x þ u;y ; e11 ¼ w;x; e12 ¼ /;y ; e16 ¼ /;x þ w;y ; ð4Þ
a comma denotes partial differentiation with respect to the subscript.

The governing equations of the laminate are given in the form (see Fares and Zenkour, 1999):
N1;x þ N6;y ¼ I�1€uuþ I�2 €ww; N6;x þ N2;y ¼ I�1€vvþ I�2 €//; ð5aÞ

Q1;x þ Q2;y þ q ¼ I�1 €wwþ ðN1w;x þ N6w;yÞ;x þ ðN6w;x þ N2w;yÞ;y ; ð5bÞ

M1;x þM6;y � Q1 ¼ I�2€uuþ I�3 €ww; M6;x þM2;y � Q2 ¼ I�2€vvþ I�3 €//; ð5cÞ
where the superposed dot denotes differentiation with respect to time, the inertias I�n and the constitutive

equations are given by:
I�n ¼
XN
k¼1

Z zk

zk�1

qðkÞzn�1 dz; ðn ¼ 1; 2; 3Þ;
Fig. 1. Laminate subjected to in-plane compressive loadings and control force.
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where qðkÞ is the material density of kth layer. The following definitions are used in the preceding equations:
ðAij;Bij;DijÞ ¼
XN
k¼1

Z zk

zk�1

CðkÞ
ij

1

h2
; 12

z;
h4

144
z2

h6

� �
dz ði; j ¼ 1; 2; 6Þ; ð7aÞ

Aij ¼
XN
k¼1

Z zk

zk�1

9

4h2
CðkÞ

ij 1

�
� 4z2

h2

�2

dz ði; j ¼ 4; 5Þ; ð7bÞ

ðNT
i ;M

T
i Þ ¼

XN
k¼1

Z zk

zk�1

aðkÞi T
h3

ðh2; 12zÞdz ði ¼ 1; 2; 6Þ; ð7cÞ
where NT
i and MT

i are resultants and moments due to thermal loading, aðkÞi are the coefficients of thermal

expansion and CðkÞ
ij are the compliance elastic constants of the kth layer.
3. Optimal design/control problem

The design and control optimization objectives of the present study are to maximize the thermal

buckling load and to minimize the vibrational response of the laminate (control objective) in a specified

time 06 t < s < 1 with the minimum possible expenditure of force qðx; y; tÞ. The total elastic energy of the
laminated plate is taken as a measure of the dynamic response which is a function of displacements, its

spatial derivatives and the velocity and is given by the following quadratic functional:
J1ðq; hkÞ ¼
1

2

Z 1

0

Z a

0

Z b

0

Z h
2

�h
2

½eiri þ qðkÞð _uu21 þ _uu22 þ _uu23Þ�dzdy dxdt; ði ¼ 1; 2; . . . ; 6Þ; ð8Þ
where ri are the stresses due to the thermomechanical loadings.
Now, the present control problem aims to determine the minimum control function q 2 L2, where L2

denotes the set of all bounded square integrable functions on the region f06 x6 a; 06 y6 b; 06 t6 s61g,
which, minimize the total elastic energy J1 of the composite laminated plate. This conditional problem may

be reduced to unconditional one by relating the total elastic energy J1 with a penalty functional involving

the control force qðx; y; tÞ which may be taken as a measure of the energy used in the controlling process,

then:
J2 ¼ J1 þ n1

Z s

0

Z b

0

Z a

0

q2ðx; y; tÞdxdy dt: ð9Þ
Note that, the new functional J2 is still quadratic and, hence, differentiable and positive definite on the
domain of solution. This problem may be solved using Liapunov–Bellman theory (see Gabralyan, 1975) to

determine the optimal control force q0.
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The design procedure aims to maximize the critical buckling temperature TcðhkÞ and minimize the control

objective function J2ðq0; hkÞ. Then, we can unified the critical buckling temperature TcðhkÞ and the control

objective J2ðq0; hkÞ in a single expression of the form:
J3ðq0; hkÞ ¼ J2ðq0; hkÞ þ n2=TcðhkÞ; ð10Þ

where n1 and n2 are positive constant weighting factors. Then the optimal design aims to determine the

optimal ply thickness hk that minimize J3.
4. Solution procedure

The solution of this problem can be performed in two parts (see Boley and Weiner, 1960). The first one is

to determine the in-plane stresses N1, N2 and N6 and the in-plane displacements u and v. The second part

makes use of these results, to yield the displacements w, w and /. For the present problem the solution will

be constructed for simply supported symmetric cross-ply laminates which has the feature that:
A16 ¼ A26 ¼ A45 ¼ 0; Bij ¼ 0; ði; j ¼ 1; 2; 6Þ; D16 ¼ D26 ¼ 0; a6 ¼ 0:
In this case, we can easily obtain from system of equations (6) the following constitutive equations:
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½e4; e5� ¼ ½A44Q2;A55Q1�: ð11cÞ

The first step of solution is performed using the governing equations (5a) and the constitutive equations

(11a). Eqs. (5a) are satisfied identically by introducing the Airy stress function F ðx; yÞ,

N1 ¼ F; yy ; N2 ¼ F; xx; N6 ¼ �F; xy ; ð12Þ
using expressions (11a) with the in-plane strain compatibility equation, namely (see Turvey and Marshall,

1995).
o2e01
oy2

þ o2e02
ox2

� o2e06
oxoy

¼ 0; ð13Þ
we get for the stress function the following fourth-order partial differentiable equation:
A11F; yyyy þ A22F; xxxx þ ðA66 þ 2A12ÞF; xxyy þ NT
1; yy þ NT

2; xx ¼ 0: ð14Þ
The boundary conditions at the laminate edges will be taken to stipulate that the edges of the plate

remain straight, that is,
uð0; yÞ ¼ 0; vðx; 0Þ ¼ 0; uða; yÞ ¼ u0; vðx; bÞ ¼ v0; ð15Þ

where u0 and v0 are constants, consistently with the following conditions on the resultant forces on the ends:
Z b

0

N1ð0; yÞdy ¼
Z b

0

N1ða; yÞdy ¼ bhP1;
Z a

0

N2ðx; 0Þdx ¼
Z a

0

N2ðx; bÞdx ¼ ahP2: ð16Þ
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A solution of Eq. (14) that satisfies the conditions (16) may be obtained in the form:
F ¼ 1

2
P1hy2 þ

1

2
P2hx2 þ c1NT

1;yy þ c2NT
2;xx; ð17Þ
with the help of solution (17), Eqs (11a) and (12), we can determine the in-plane forces N1, N2, N6 and the

displacements u and v.
The second step of the solution consists in the determination of the deflection w and of the critical

combination of the applied load and temperature levels. This is done with the aid of equations (5b), (5c),

(11b) and (11c), with the following boundary conditions appropriate to simply supported edges:
M1 ¼ w ¼ / ¼ 0; at x ¼ 0; a;

M2 ¼ w ¼ w ¼ 0; at y ¼ 0; b:
ð18Þ
The exact solution of the above system of partial differential equations (5b) and (5c) under the boundary

conditions (18), may be obtained by expressing the functions w, w and / and the closed-loop control

function q in the form:
ðw;w;/; qÞ ¼
X
m;n

ðWmnXY ;WmnXxY ;UmnXYy ;QmnXY Þ; ð19Þ
where Wmn, Wmn, Umn and Qmn are unknown functions of time, and the functions X ðxÞ and Y ðyÞ have the

forms:
X ðxÞ ¼ sin lmx; lm ¼ mp=a; Y ðyÞ ¼ sin kny; kn ¼ np=b:
Substituting expressions (11b), (11c) and (19) into Eqs (5b) and (5c), we obtain after some mathematical
manipulations, the following time system of equations:
½R�fKg þ ½L�f€KKg ¼ ff g; ð20Þ

where {K}, {€KK} and {f } are the displacements, the inertia and the force vectors, respectively. The matrices

½R� and ½L� are given in Appendix A.

The present problem is solved under the assumption that the buckling and vibration of laminate occur at
different times during its service life (see Sloss et al., 1992). Then, the prebuckling response may be de-

termined by solving Eq. (20) with the non-linear terms involving thermal stresses omitted. While, the critical

buckling temperature rise Tc is found by solving the eigenvalue problem associated with equations (20) in

which the control force and inertia terms are dropped. In this case, system (20) is reduced to a homogeneous

linear algebraic system of three equations with three unknowns:
½R�fKg ¼ f0g: ð21Þ
5. Optimal control force

The optimal control force q0 and controlled deflection W 0
mn corresponding to the prebuckling response

may be found from the system of equations (20), with the non-linear terms including the thermal stresses

and the in-plane inertia terms omitted. Then, an equation of the time-dependent functions Wmn and Qmn may

be obtained in the form:
€wwmn þ x2
mnWmn ¼ Qmn=I�1 ;

x2
mn ¼

1

e2I�I1
ðe3W3 þ e4U3 þ e0W3Þ:

ð22Þ

0 1
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Also, using expressions (11) and (19) with (9), to get the cost functional J2 in the form:
J2 ¼
X
m;n

Z 1

0

ðd1W 2
mn þ d2 _WW 2

mn þ d3Q2
mnÞdt ¼

X
m;n

Jmn; ð23Þ
where the quantities I1, ei and di are given in Appendix A. Since the system of equations (20) is separable,

hence the functional (23) depends only on the variables found in ðm; nÞth equations of the system. With the

aid of this condition, the problem is reduced to a problem of analytical design of controllers (see Gabra-

lyan, 1975), for every m, n ¼ 1; 2; . . . ;1.

Now the optimal control problem is to find a control function q0ðtÞ that satisfies the conditions:
J2ðq0Þ6 J2ðqÞ; for all qðtÞ 2 L2ð½0;1�Þ;
that is:
min
q

J2 ¼ min
q

X
m;n

Jmn ¼
X
m;n

min
Qmn2L2

Jmn:
Hence, the minimization problem can be carried out independently for every modal equation. For such

problem, Liapunov–Bellman theory (see Gabralyan, 1975) is considered as an effective approach to solve it.

The necessary and sufficient conditions according to Liapunov–Bellman theory for minimizing the func-

tional (23) is:
min
Qmn

oVmn
oWmn

_WWmn

�
þ oVmn
o _WWmn

€wwmn þ Jmn

�
¼ 0; ð24Þ
provided that the Liapunov function Vmn;
Vmn ¼ AW 2
mn þ 2BWmn

_WWmn þ C _WW 2
mn; ð25Þ
is a positive definite, i.e. A > 0, C > 0 and AC > B2, where Jmn is the integrand of (23). Using Eq. (24), we

can obtain the optimal control function in the form:
Q0
mn ¼

�1

d3I�1
ðBWmn þ C _WWmnÞ; ð26Þ
then, substituting Eqs (22), (23), (25) and (26) into the condition (24), and equating the coefficients of W 2
mn,

_WW 2
mn and Wmn

_WWmn by zero, we get a system of equations. The general solution of this system under the

condition that the Liapunov function is a positive definite is given by:
B ¼ �I�21 x2
mnd3

"
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d3 x4

mnd3 þ
d1
I�21

� �s #
; C ¼ �I�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d3ð2Bþ d2Þ

p
; ð27Þ
using expressions (26) and (27) into Eq. (22), it takes the form:
€wwmn þ amn _wwmn þ X2
mnWmn ¼ 0; amn ¼

C

d23I
�4
1

; X2
mn ¼ x2

mn þ
B

d3I�21
: ð28Þ
The solution of Eq. (28) for which 2Xmn > amn, is given by:
W 0
mn ¼ e�amnt=2½bmn cosð�mmmntÞ þ cmn sinð�mmmntÞ�; �mm2mn ¼ X2

mn �
1

4
a2mn; ð29Þ
where bmn and cmn are unknown coefficients which may be obtained from the initial conditions (1) by ex-

panding it in double Fourier series, then:
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cmn ¼
amnbmn þ 2A�

mn

2�mmmn
; ðbmn;A

�
mnÞ ¼

4

abx2
mn

Z a

0

Z b

0

ðA�;B�ÞXY dxdy: ð30Þ
Insert the expressions (29) and (30) into Eqs (23) and (26) we can obtain the total elastic energy and the

optimal control force.
6. Critical temperature and optimal design procedure

The critical combination of the applied edges loads and temperature levels, at which the buckling occurs,
may be determined from the requirement for a non-zero solution of system (21). Thus, we must set the

determinant jRj equal to zero, i.e.
jRj ¼ 0; or jRj � kjU j � P jU j ¼ 0; ð31Þ

where the matrices ½U �, ½U � and ½R� are given in Appendix A, k is the non-dimensional temperature

parameter where k ¼ a1T0 � 102, T1 ¼ 10T0, and P is the non-dimensional edges load parameter,

P ¼ 100P1=E2, P1 ¼ P2. For a given value of P less than the pure critical edges loads, the lowest value of k
with respect to mode numbers ðm; nÞ represents the critical value of temperature rise Tc. Also, for a given

value of k less than the pure critical temperature rise, the lowest value of P with respect to mode numbers

ðm; nÞ represents the critical value of buckling load Pc, i.e.
Tc ¼ min
m;n

k; Pc ¼ min
m;n

P ; m; nP 1: ð32Þ
The aim of the design procedure is to maximize the critical buckling temperature Tc using the layer

thickness hk as a design variable. So, for the numerical purpose, we consider a general symmetric laminates
with a stacking sequence (0�/90�/0�. . .) having an odd number N of layers with thicknesses: ðh1; h2;
h3;; . . . = . . . ; h3; h2; h1Þ, h1 ¼ h3 ¼ h5 ¼ � � � ; h2 ¼ h4 ¼ h6 � � � (see, Fig. 2).

In this case, we can formulate the layer thickness hk as a function of number of layers N by introducing a

thickness ratio g as follows:
hk ¼
gh=2 : k ¼ ð1; 3; . . . ;NÞ
h½4� gðN þ 1Þ�=ð2N � 2Þ : k ¼ ð2; 4; . . . ;N � 1Þ:

�

Fig. 2. Geometry and cross section of the symmetrically laminated cross-ply laminate.
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Therefore, the optimum values gopt of the thickness ratio are determine from the following conditions:
J 0ðgoptÞ ¼ min
g

J3ðgÞ; 06 g6 4=ð1þ NÞ: ð33Þ
7. Numerical results and discussion

In this section, numerical results for the controlled deflections w0, optimal force q0 and the total elastic

energy J1 are presented when all layers are orthotropic. The engineering constants are introduced instead of

the elastic constants from the relations:
C11 ¼
1

E1

; C22 ¼
1

E2

; C12 ¼ � m12
E1

; C23 ¼ � m23
E2

; C13 ¼ � m13
E1

; C44 ¼
1

G23

;

C55 ¼
1

G13

; C66 ¼
1

G12

; ð34Þ
where Ei are Young�s moduli; mij are Poisson�s ratios and Gij are shear moduli. The initial conditions (2) are

chosen in the form:
wðx; y; 0Þ ¼ 10�3X ðxÞY ðyÞ; _wwðx; y; 0Þ ¼ 0: ð35Þ
In all calculations, unless otherwise stated, the following parameters are used,
E1=E2 ¼ 25; G12=E2 ¼ 0:5; G23=E2 ¼ 0:2; m13 ¼ m12; m12 ¼ 0:25; G13 ¼ G12;

a=h ¼ 15; a2=a1 ¼ 3; n1 ¼ 0:1; n2 ¼ 1; t� ¼ t
ffiffiffiffiffi
E2

p
=q; �qq ¼ 100q=E2;

u0 ¼ v0 ¼ 0; N ¼ 3: ð36Þ
The numerical results for deflections and force functions are given at the midpoint x ¼ a=2, y ¼ b=2.
Table 1 contains numerical results of the optimal thickness ratio gopt, critical temperature level T 0

c for

laminates designed optimally over the thickness and critical temperature level Tc for laminates with equi-

thickness layers. In this table, the variations of gopt, T
0
c and Tc are studied with respect to the edges load P ,

number of layers N and aspect ratio a=b. Note that, the optimal design procedure is more required for
square like laminates which have low resistance to thermal buckling, than the long laminates (a=bP 3).

Also when P ¼ 0, the critical temperature level T 0
c for optimally designed laminates is approximately four

times its corresponding value for non-optimal ones. Further, the ratio between T 0
c and Tc increases grad-

ually with increasing the edges loads Pc. The postbuckling edges loads with respect to the non-optimal

laminates (Pc P 1 in case I and Pc P 2 in case II) become prebuckling loads with respect to the optimal ones.

So that, in all cases, the minimum values of T 0
c for optimal laminates are greater than the maximum values

of Tc for non-optimal ones. Then, the present design procedure raises the critical combination level of the

applied load and temperature. Further, we observe that the edges load P has a weak effect on the optimal
thickness ratio gopt, where gopt increases very slowly with increasing Pc. While, the effect of the aspect ratio

a=b on gopt is more considerable, particularly, for long laminates so that for laminates with 1 < a=b < 2, the

optimal thickness ratio gopt takes values between 0.92 and 0.86, while, for laminates with 2 < a=b < 3, the

ratio gopt takes values between 0.86 and 0 (Pc 6 2). Here, the optimal laminate corresponding to the case

gopt ¼ 0 represents a single layer plate with fiber orientation angle 90�.
The improved critical values of temperature and edges load at which buckling occur for different values

of a=b and N are given in Table 2 for three buckling cases, where P 0
c0 corresponds to a critical pure edges

loads (T ¼ 0), T 0
c0 represents a critical pure thermal load (P ¼ 0), and ðP 0

c ; T
0
c Þ corresponds to the general

case in which both heat and edges loads are applied. These results may be seen to fit accurately the formula:



Table 1

The critical temperature Tc for some cases of load Pc and a=b a2=a1 ¼ 3, – means any temperature

Pc N ¼ 3 N ¼ 5 N ¼ 7

gopt T 0
c Tc gopt T 0

c Tc gopt T 0
c Tc

Case I. a/b ¼ 1

0 0.92 6.102 1.525 0.66 5.694 1.395 0.5 6.003 1.365

0.5 0.93 5.387 0.649 0.66 4.993 0.514 0.5 5.305 0.482

1 0.93 4.673 – 0.66 4.292 – 0.5 4.606 –

2 0.94 3.248 – 0.66 2.891 – 0.5 3.209 –

3 0.96 1.829 – 0.66 1.489 – 0.5 1.812 –

Case II. a/b ¼ 2

0 0.86 5.248 3.717 0.66 4.808 3.664 0.5 4.921 3.653

0.5 0.87 4.386 2.646 0.66 4.013 2.589 0.5 4.132 2.577

1 0.88 3.529 1.576 0.66 3.217 1.514 0.5 3.342 1.500

2 0.91 1.837 – 0.66 1.625 – 0.5 1.762 –

3 0.97 0.186 – 0.66 0.034 – 0.5 0.183 –

Case III. a/b ¼ 3

0 0 11.13 10.72 0 11.13 10.73 0 11.13 10.74

0.5 0 9.301 8.976 0 9.301 8.976 0 9.301 8.977

1 0 7.468 7.229 0 7.468 7.213 0 7.468 7.216

2 0.78 4.232 3.736 0.66 3.803 3.701 0 3.803 3.696

3 0.85 1.725 0.242 0.66 1.394 0.188 0.5 1.450 0.175

Table 2

The critical values of edges load P and temperature Tc for three cases of a=b

Load a=b ¼ 1 a=b ¼ 2 a=b ¼ 3

N ¼ 3 N ¼ 5 N ¼ 7 N ¼ 3 N ¼ 5 N ¼ 7 N ¼ 3 N ¼ 5 N ¼ 7

T ¼ 0, P 0
c0 ¼ 4.297 4.063 4.297 3.119 3.021 3.116 3.778 3.720 3.763

P ¼ 0, T 0
c ¼ 6.102 5.694 6.003 5.248 4.808 4.921 11.13 11.13 11.13

P ¼ 1
2
, T 0

c ¼ 5.387 4.993 5.305 4.386 4.013 4.132 9.301 9.301 9.301

P ¼ 1, T 0
c ¼ 4.673 4.292 4.606 3.529 3.217 3.342 7.468 7.468 7.468

P ¼ 2, T 0
c ¼ 3.248 2.891 3.209 1.837 1.625 1.762 4.232 3.803 3.803

P ¼ 3, T 0
c ¼ 1.829 1.489 1.812 0.186 0.034 0.183 1.725 1.394 1.394
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T 0
c

T 0
c0

þ P 0
c

P 0
c0

¼ 1 ð37Þ
for all aspect ratios, number of layers and all combinations of heat and edges loadings. Fig. 3 shows ob-

viously this fact which agrees with the results obtained in other studies (see Boley and Weiner, 1960; Turvey

and Marshall, 1995). For design process, Eq. (37) may be helpful in determination of buckling loads of

heated and loaded laminates. Fig. 4 shows the variation of Tc with respect to Pc for optimal and non-

optimal laminates. This figure reveals that the design procedure raises significantly the level of the critical

temperature for all values of edges loads.

The effects of side-to-thickness ratio a=h and thermal expansions ratio a2=a1 on the optimization process

are displayed in Fig. 5 which shows that the optimal design over the thickness is needed for all values of a=h
and a2=a1. Also, the optimal design is very active for moderately thick laminates with low values of a2=a1,
while it is inactive for thin laminates with high values of a2=a1. This is may be explained by the fact that thin
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laminate has a very low resistance to thermal buckling. In addition, the large difference between the thermal
expansion coefficients a1 and a2 in cross-ply laminates makes that the layers under the thermal load exhibit

various elastic behaviors causing decrease in the laminate resistance to thermal buckling.

Fig. 6 contains Tc-curves plotted against the side-to-thickness ratio a=h for laminates with three, five and

seven layers. It is worth noting that the optimization over the thickness makes always to reduce the number

of layers. This is due to the fact that the laminate with few symmetric layers is more homogeneous and

resists the thermal buckling.

Fig. 7 includes curves of the controlled elastic energy J 3ð¼ 100J1=E2Þ plotted against the orthotropy

ratio E1=E2 and temperature levels (103a0T0Þ. These curves indicate that beside the control force, the opti-
mization over the thickness considerably reduces the energy level of the laminate as compared to a non-

optimal one. In addition, the elastic energy still is reduced by virtue of the optimization with respect to the

design variable only without active control (see Fig. 8). Then the design optimization by itself can reduce

the dynamic response. Also, of course, as the temperature increase, the elastic energy significantly increase,
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but, the optimal design procedure reduces and damps this behavior causing that the energy slowly increases
with the increase of the temperature level. The laminates exhibit similar behavior with increasing the or-

thotropy ratio. This is may due to the fact that the design optimization makes the laminate is more stiffer in

bending and has smaller deflections when compared to the non-optimal one (see Fig. 7(a)). The behavior of

the controlled energy J 3 and control force �qq0ð¼ 100q0=E2Þ with time t� is studied in Fig. 9. Note that the

optimization control not only reduces the elastic energy, but also, reduces the expenditure of control energy

and the time of damping process.
8. Conclusion

The optimal layer thickness and optimal closed loop control function are determined in a multiobjective

formulation of the design and control problem for a symmetric cross-ply laminate with simply supported

edges. The objectives of the present study are the maximization of the critical combination of the applied

edges loads and temperature levels and the minimization of the laminate dynamic response. The design and

control objectives are formulated based on a consistent first-order shear deformation theory without in-
troducing a shear correction factor. Numerical results are presented to show the advantages of the present
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optimization control procedure. The numerical study indicates that the present control optimization is very

active for moderately thick laminates and square like ones, particularly for laminates with low thermal

expansions ratio a2=a1 and high, orthotropy ratio E1=E2. For these laminates, the control optimization is

considerably reduces their dynamic response, but, it is less active in maximizing their thermal buckling. The
design procedure without any control force reduces considerably the dynamic response of the laminate so

that it limits the increase in laminate energy due to the increase in the temperature. Moreover, the present

optimization approach not only maximizes the thermal buckling and minimizes the dynamic response, but

also, it reduces the used control force and time of the damping process.
Appendix A

The coefficients ei and di at T0 ¼ 0 are:
d1 ¼
1

2e20
½I22ðe3 þ e4Þ2=D66 þ I16ðe0 þ e4Þ2=A44 þ I10ðe3 þ e0Þ2=A55 þ ðe24D11I23 � 2e3e4D12I7 þ e23D22I8Þ=D�;

d2 ¼ ðI�1 I1 þ I10I�3 e
2
3=e

2
0Þ=2;

e0 ¼ ðW4U5 �W5U4Þ; e3 ¼ W5U4 � W4U5; e4 ¼ W5W4 �W4W5;

½R� ¼
W3 U3 W3 � kc
W4 U4 W4

W5 U5 W5

2
4

3
5; ½R� ¼

W3 U3 W3

W4 U4 W4

W5 U5 W5

2
4

3
5;

½U � ¼
W3 U3 c
W4 U4 0

W5 U5 0

2
4

3
5; ½U � ¼

W3 U3 �cc
W4 U4 0

W5 U5 0

2
4

3
5;

W3 ¼ I5=A55 þ I6=A44; W3 ¼ I5=A55; U3 ¼ I6=A44;

W4 ¼ I10D=A55; c4 ¼ I10ðD12mT
2 � D22mT

1 Þ; W4 ¼ �I12D22 þ I10D=A55 � I14D=D66;

U4 ¼ I14ðD12 � D=D66Þ; c5 ¼ I16ðD12mT
1 � D11mT

2 Þ; W5 ¼ I16D=A44; W5 ¼ I18D=A44;

c ¼ �I10l2
mk

2
nða1nT1 k

2
n þ a2nT2l

2
mÞ; �cc ¼ 10�2hE1ðI5 þ I6Þ; D ¼ ðD11D22 � D2

12Þ;

U5 ¼ I16D=A44 � I18D=D66 � D11I20; L33 ¼ I1I�1 ; Lij ¼ 0; ði; j ¼ 4; 5Þ; ff g ¼ ½q; c4; c5�
T
;

where
ðnTi ;mT
i Þ ¼

1

ha1 � 102

XN
k¼1

Z zk

zk�1

ðaj; ajz2h3=120Þk dz; ði; j ¼ 1; 2; 6Þ;

ðI1; I5; I6; I7; I8Þ ¼
Z a

0

Z b

0

ðXY ;X;xxY ;XY;yy ;X;xxY;yy ;XY;yyÞXY dxdy;

ðI10; I12; I14Þ ¼
Z a

0

Z b

0

ðX;xY ;X;xxxY ;X;xY;yyÞX;xY dxdy;
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ðI16; I18; I22; I23Þ ¼
Z a

0

Z b

0

ðX 2Y 2
;y ;X;xxXY 2

;y ;X
2
;xY

2
;y ;X

2
;xxY

2
;yÞdxdy;

I2 ¼ I3 ¼ I4 ¼ I9 ¼ I11 ¼ I13 ¼ I15 ¼ I17 ¼ I19 ¼ I20 ¼ I21 ¼ 0:
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