(2, 3, t)-Generations for the Tits simple group F;(2)’

MOHAMMED ALI FAYA IBRAHIM
King Khalid University
Department of Mathematics
P.O. Box 9004, Abha
SAUDI ARABIA
mafibraheem @kku.edu.sa

FARYAD ALI
King Khalid University
Department of Mathematics
P.O. Box 9004, Abha
SAUDI ARABIA
fali@kku.edu.sa

Abstract: A group G is said to be (2, 3, t)-generated if it can be generated by two elements = and y such that
o(z) = 2, o(y) = 3 and o(zy) = t. In this paper, we determine (2, 3, ¢)-generations of the Tits simple group
T = 2F(2)" where t is divisor of |T|. Most of the computations were carried out with the aid of computer algebra

system GAP [17].
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1 Introduction

A group G is called (2, 3, t)-generated if it can be gen-
erated by an involution x and an element y of order 3
such that o(xzy) = t. The (2, 3)-generation problem
has attracted a vide attention of group theorists. One
reason is that (2, 3)-generated groups are homomor-
phic images of the modular group PSL(2,7Z), which
is the free product of two cyclic groups of order two
and three. The motivation of (2, 3)-generation of sim-
ple groups also came from the calculation of the genus
of finite simple groups [22]. The problem of finding
the genus of finite simple group can be reduced to one
of generations (see [24] for details).

Moori in [15] determined the (2, 3, p)-generations
of the smallest Fischer group F5o. In [11], Ganief
and Moori established (2, 3, t)-generations of the third
Janko group J3. In a series of papers [1], [2], [3].
[4], [5], [12] and [13], the authors studied (2,3)-
generation and generation by conjugate elements of
the sporadic simple groups C'oy, Cos,Cos, He, HN,
Suz, Ru, HS, McL, Th and Fis3. The present arti-
cle is devoted to the study of (2, 3, ¢)-generations for
the Tits simple group T, where ¢ is any divisor of |T]|.
For more information regarding the study of (2, 3,¢)-
generations, generation by conjugate elements as well
as computational techniques used in this article, the
reader is referred to [1], [2], [3], [4], [5], [11], [15],
[16] and [22].

The Tits group T = 2Fy(2)’ is a simple group
of order 17971200 = 2!1.33.52.13. The group T is
a subgroup of the Rudvalis sporadic simple group Ru
of index 8120. The group T also sits maximally inside
the smallest Fischer group F'igs with index 3592512.
The maximal subgroups of the Tits simple group T

was first determined by Tchakerian [19]. Later but
independently, Wilson [20] also determined the max-
imal subgroups of the simple group T, while studying
the geometry of the simple groups of Tits and Rud-
valis.

For basic properties of the Tits group T and infor-
mation on its subgroups the reader is referred to [20],
[19]. The ATILAS of Finite Groups [9] is an impor-
tant reference and we adopt its notation for subgroups,
conjugacy classes, etc. Computations were carried out
with the aid of GAP [17].

2 Preliminary Results

Throughout this paper our notation is standard
and taken mainly from [1], [2], [3], [4], [5], [15]
and [11]. In particular, for a finite group G with
C1,Co,...,Cy conjugacy classes of its elements
and g; a fixed representative of Cj, we denote
A(G) = Ag(Cy,Co,...,Ck) the number of dis-
tinct tuples (g1,92,...,9k—1) with g; € C; such

that g192...9x-1 = gr. It is well known that
Ag(C1,Cy,. .., Cy) is structure constant for the con-
jugacy classes C', Cy, . . ., Ck and can easily be com-

puted from the character table of G (see [14], p.45)
by the following formula Ag(Ci,Co,...,Ck) =

|C1]|Ca]...|Cr—1] Zm xi(g1)xi(g2)---xi (gr—1)xi(gr)
|G| i=1 xi(le)]s—2 )
where  x1,Xx2,...,Xm are the irreducible

complex characters of G. Further, let
A*(G) = AL(Cy,Cs,...,C) denote the num-
ber of distinct tuples (g1,92,...,9k—1) With
gi € Cyand gi1g2...gx—1 = gi such that G =<
91,92, gp—1 >. If Ag(Cl, Cyy...,Cr) > 0,
then we say that G is (C1,Cy,. .., Cy)-generated.
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If H is any subgroup of GG containing the fixed ele-
ment g € Cy, then Xy (C1,Cy,...,Ck_1,Ck)
denotes the number of  distinct tuples
(91,92, -, 9k—1) € (C1 x Ca x ... x Cy_1) such
that 192 ... gk-1 = gk and (g1, 92, ..., gk—1) < H
where X (Cy,Co,...,Cy) is obtained by summing
the structure constants Ag(cy,ca, ..., c) of H over
all H-conjugacy classes ci,ca,...,cr_1 satisfying
¢ CHNC;forl <i<k-—1.

For the description of the conjugacy classes, the
character tables, permutation characters and informa-
tion on the maximal subgroups readers are referred to
ATILAS [9]. A general conjugacy class of elements
of order n in G is denoted by n.X. For example 2A
represents the first conjugacy class of involutions in a
group G.

The following results in certain situations are very
effective at establishing non-generations.

Theorem 1 (Scott’s Theorem, [8] and [18]) Let
T1,%2,...,Tm be elements generating a group G with
r1x2 - Ty = lg, and V' be an irreducible module for
G of dimension n > 2. Let Cy(z;) denote the fixed
point space of (x;) on'V, and let d; is the codimension
of V/Cv(x;). Thendi +do + -+ -+ dp, > 2n.

Lemma?2 (/8]) Let G be a finite centerless
group and suppose 1X, mY, nZ are G-conjugacy
classes for which A*(G) = AL(IX,mY,nZ) <
|Ca(2)|,z2 € nZ. Then A*(G) = 0 and therefore
G is not (IX,mY,nZ)-generated.

3 (2,3,t)-Generations of Tits group

The Tits group T = 2F(2)’ has 8 conjugacy classes
of its maximal subgroups as determined by Wilson
[20] and listed in the ATILAS [9]. The group T has
22 conjugacy classes of its elements including 2 invo-
lutions namely 2A and 25.

In this section we investigate (2, 3, ¢)-generations
for the Tits group T where ¢ is a divisor of |T|. Itis a
well known fact that if a group G is (2, 3, t)-generated
simple group, then 1/2 4+ 1/3 4+ 1/t < 1 (see [7] for
details). It follows that for the (2, 3, ¢)-generations of
the Tits simple group T, we only need to consider ¢ €
{8,10,12,13,16}.

Lemma3 The Tits simple group T is not
(2A4,3A,tX)-generated  for any tX €
{8A,8B,8C,8D,10A}.

Proof. For the triples (24,3A4,8A) and (24,3A4,8B)
non-generation follows immediately since the
structure constants Ar(24,3A4,84) = 0 and
AT(2A,3A,8B) = 0.

The group T acts on 78-dimensional irreducible
complex module V. We apply Scott’s theorem (cf.
Theorem 1) to the module V' and compute that

dgA = dim V/CV 2A)) = 32,

leA = dzm(V/C’V(10A

Now, if the group T is (24, 3A, t X )-generated, where
tX € {8C,8D,10A}, then by Scott’s theorem we
must have

doa +dsa+dix > 2 x 78 = 156.

However, daa+dsa+dyx = 154, and non-generation
of the group T by these triples follows. d

Lemmad4 The Tits simple group T s
(2B,3A,87)—generated, where Z € {A,B,C, D}
ifand only if Z = A or B.

Proof. Our main proof will consider the following
three cases.

Case (2B,3A,8%Z), where Z € {A,B}: We
compute A7 (2B,3A4,87Z) = 128. Amongst the max-
imal subgroup of T, the only maximal subgroups hav-
ing non-empty intersection with any conjugacy class
in the triple (2B,3A,tZ) is isomorphic to H =
22.[28]:S3. However Xy (2B,3A,8Z) = 0, which
means that H is not (2B,3A,87)-generated. Thus
Ax(2B,3A,87Z) = Ar(2B,3A,8Z) = 128 >
0, and the (2B,3A,8%)-generation of T, for Z €
{A, B}, follows.

Case (2B,3A,8C): The only maximal sub-
groups of the group T that may contain (28,34, 8C)-
generated subgroups, up to isomorphism, are H;
L3(3):2 (two non-conjugate copies) and Ho
22.[28]:S3.  Further, a fixed element z € 8C
is contained in two conjugate subgroup of each
copy of H; and in a unique conjugate subgroup
of Hy. A simple computation using GAP reveals
that Ap(2B,3A4,8C) = 112, Xy, (2B,3A,8C) =
Y1,3)(2B,34,8C) = 20 and Xy, (2B,3A,8C) =
32. By considering the maximal subgroups of Hj; =
L3(3) and Ho, we see that no maximal subgroup of
Hy, and H; is (2B,3A,8C)-generated and hence no
proper subgroup of Hy; and Hs is (2B,3A4,8C)-
generated. Thus,
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A%(2B,34,8C) = Ar(2B,3A4,8C)
—4%%; (2B, 34,85)
—¥%. (2B, 34,80C)
= 112 —4(20) — 32 =0.



Therefore, the Tits simple group T is not
(2B, 3A,8C)-generated.

Case (2B,3A,8D): In this case,
Ar(2B,3A,8D) = 112.  We prove that Tits
simple group T is not (2B,3A,8D)-generated by
constructing the (2B,3A,8D)-generated subgroup
of the group He explicitly. We use the standard
generators” of the group T given by Wilson in
[21]. The group T has a 26-dimensional irreducible
representation over GF(2). Using this representation
we generate the Tits group T = (a,b), where a
and b are 26 x 26 matrices over GIF(2) with orders
2 and 3 respectively such that ab has order 13.
Using GAP, we see that a € 24, b € 3A. We
produce ¢ = (ababab?)®, p = abababab®abab®ab?,
d = (acp)®, x = p'%dp~16 such that ¢,d,z € 2B,
p € 10A and b € 8D. Let H = (x,b) then H < T
with H = L3(3):2. Since no maximal subgroup
of H is (2B,3A,8D)-generated, that is no proper
subgroup of H is (2B,3A,8D)-generated and we
have X% (2B,3A4,8D) = Sy (2B,3A,8D). Since
Yu(2B,3A,8D) = 28 and z € 8D is contained in
exactly two conjugate subgroups of each copy of H,
we obtain that A}(2B,3A4,8D) = 0. Hence the Tits
simple group T is not (2B, 3A,8D)-generated. This
completes the lemma. a

Lemma 5 The Tits group T is
(2B,3A,10A)—generated.

Proof. Up to isomorphism, the only maximal sub-
groups having non-empty intersection with any con-
jugacy class in the triple (2B,3A,10A) are isomor-
phic to H = 22[28]:S3, K = Ag-2%(two non-
conjugate copies). Since Ap(2B,34,104) = 100
and Xy (2B,3A4,10A) = 0 = Xg(2B,34,10A).
we conclude that no maximal subgroup of T is
(2B,3A,10A)-generated. Thus

A%(2B,34,104) = Ar(2B,3A4,104) = 100

and the (2B, 3A, 10 A)-generation of Tits group T fol-
lows. d

Lemma 6 The Tits group T is not
(2X,3A,127Z)—generated where X, Z € {A, B}.

Proof. First we consider the case X = A.
The maximal subgroups of the group T that may
contain (24,3A,127)-generated subgroups are iso-
morphic to H = 22[2%]:935 and K = 5%4A,
(two non-conjugate copies). We compute that
Ap(2A,3A,127) = 32, ¥(24,34,127) = 12
and ¥ (24,3A4,12Z) = 15. A fixed element of
order 12 in T is contained in a unique conjugate
subgroup of H and two conjugate subgroups of K.

Since no maximal subgroup of each H and K is
(2A4,3A,127)-generated, we obtain

AL(24,3A,127) = Ar(24,34,122)
—¥%(24,3B,122)
—4%%(24,34,122)
= 32-12-2(15) <0

and the non-generation of the group Tits by the triple
(24,3A,127) follows.

Next, suppose That X = B. There are six
maximal subgroups of the group T having non-empty
intersection with each conjugacy class in the triple
(2B,3A,12Z), are isomorphic to H; = L3(3):2
(two non-conjugate copies), Ho = Ly(25), H3 =
22.[28]:S3 and Hy = 5%4A4 (two non-conjugate
copies). Further, a fixed element of order 12 in
Tits group is contained in a unique conjugate sub-
groups of each of Hy, Hy, H3 and Hy. We calculate
Ar(2B,3A,127) = 84, ¥y, (2B,3A,127) = 27,
Yu,(2B,3A,127) = 24, ¥y, (2B,3A,127) = 12
and Xp,(2B,3A,12Z) = 0. Since no maximal sub-
group of each of the groups Hy, Ho, Hs and Hy is
(2B,3A,12Z7)-generated. We conclude that

A%(2B,3A,127) = Ar(2B,34,127)
—2%% (2B,34,122)
—%%,(2B,34,122)
—%%.(2B,34,122)
= 84-2(27)—24—12<0.

Therefore Tits group T is not (2B,3A4,127)-
generated. This completes the proof. O

Lemma 7 The Tits group T is (2X,3A,13%2)-
generated where X, Z € {A, B} ifand only if X = A

Proof. First we consider the case X = A. The struc-
ture constant At(2A4,3A4,13Z) = 13. The fusion
maps of the maximal subgroup of Tits group T into
the group T shows that there is no maximal subgroup
of T has non-empty intersection with the classes in the
triple (24, 3A, 137). That is no maximal subgroup of
Tis (24,3A,13Z)-generated. Hence,

A%5(24,3A,137) = Ap(24,3A,132) =13 > 0

which implies that the Tits group 7' is (24,34, 132)-
generated for Z € {A, B}.

Next suppose that X = B. Up to iso-
morphism, the only maximal subgroups of T hav-
ing non-empty intersection with each conjugacy
class in the triple (2B,3A,13Z) are isomorphic
to L3(3):2 (two non-conjugate copies) and Lo (25).



Further a fixed element of order 13 in the Tits
group T is contained in a unique conjugate of each
of L3(3):2 and in three conjugate of Lo(25) sub-
groups. We compute that Ap(2B,3A,137) = 104,
Y L.32(2B,34,132) = ¥.,5(2B,34,134) =
13 and ¥, (95)(2B,34,13Z) = 26. Now by con-
sidering the maximal subgroups of L3(3) and L2 (25),
we see that no maximal subgroup of the groups
L3(3) and Lo(25) is (2B, 2A, 13Z)-generated. It fol-
lows that no proper subgroup of L3(3) or La(25) is
(2B,3A,13Z7)-generated. Thus we have

A%(2B,3A,13Z) = Ar(2B,34,132)
—2%} . 5)(2B,34,132)
—3%} (25 (2B,34,132)

= 104 —2(13) — 3(26) — 12 = 0,

proving non-generation of the Tits group T by the
triple (2B, 3A,13Z), where Z € {A, B}. O

Lemma 8 The Tits group T is (2X,3A4,162)-
generated, where X € {A/B} and Z ¢
{A,B,C,D}.

Proof. We treat two cases separately.

Case (2A,3A,16Z). The structure constant
AT(2A,3A,16Z) = 16. We observe that the
group isomorphic to 22.[28]:S3 is the only maximal
subgroup of T that may contain (24,3A4,167)-
generated subgroups. However we calculate
Y1 (24,34,162) = 0 for H = 22.[2%]:S3 and hence
AT(2A,3A,16Z) = Ar(24,34,16Z) = 16 > 0,
proving that (24,3A,16Z) is a generating triple of
the Tits group.

Case (2B,3A,16Z): Up to isomorphism, H =
22.[28]: 93 is the only one maximal subgroup of T that
may admit (2B,3A,167)-generated subgroups. A
fixed element of order 16 in the Tits group T is con-
tained in a unique conjugate subgroups of H. Since
Ar(2B,3A,167) = 112, Xy(2B,3A,167) = 32,
we conclude that

A%(2B,3A,16Z) > 112 — 32 =80 > 0

and the (2B, 34, 167)-generation of T follows. [

We now summarize our results in the next theo-
rem.

Theorem 9 Let tX be a conjugacy class of the
Tits simple group T. The group T is (2A,3A,tX)-
generated if and only if tX € {13Y,16Z} where
Y € {A,B} and Z € {A,B,C,D}. Further,
the group T is (2B,3A,tX)-generated if and only if
tX € {8Y,10A,16Z}.

Proof. This is merely a restatement of the lemmas in
this section. d
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