

Available online at www.sciencedirect.com

Physica B 368 (2005) 51-57

www.elsevier.com/locate/physb

Characterization and transport properties of semiconducting Fe₂O₃-Bi₂O₃-Na₂B₄O₇ glasses

A. Al-Hajry, N. Tashtoush, M.M. El-Desoky*

Physics Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia

Received 12 June 2005; received in revised form 21 June 2005; accepted 25 June 2005

Abstract

Semiconducting oxide glasses of the system Fe_2O_3 - $Na_2B_4O_7$ were prepared by a press-quenching method. Their DC conductivity was measured in the temperature range of 300–473 K. In this temperature range, the DC conductivity increased from 10^{-9} to 10^{-5} Scm⁻¹ with increasing Fe_2O_3 concentration. Bi_2O_3 acted as a reducing agent for redox reaction during glass synthesis and affected the conductivity. Mössbauer results revealed that the relative fraction of Fe^{2+} increases with an increasing Fe_2O_3 concentration. The conduction mechanism was found to obey the non-adiabatic small polaron hopping model, and was mainly due to hopping between Fe-ions in the glasses. The small polaron coupling γ_p was calculated and found to be in the range of 17.06–26.25. For varying glass compositions, hopping mobility and carrier density were calculated and their values were in the range of 3.66×10^{-8} - 8.17×10^{-5} cm²V⁻¹s⁻¹ and 1.29×10^{17} - 5.04×10^{18} cm⁻³ at 400 K, respectively.

© 2003 Elsevier B.v. All fights feserv

PACS: 61.43.Fs; 61.40

Keywords: Borate glasses; Activation energy, SPH

1. Introduction

During the last two decades, many binary and ternary transition metal oxide (TMO) glasses have been studied because of their interesting semiconducting properties. Semiconducting behavior in these glasses is due to the hopping of 'polarons' from the higher to the lower valence states of the transition metal ions [1–4]. Strong electron–phonon interaction is considered to be responsible for the formation of small polarons in these glasses [5]. The data of the temperature dependence of conductivity in these TMO glassy systems, like NiO–V₂O₅–TeO₂ [6], BaO–CaO–Fe₂O₃–P₂O₅ [7], V₂O₅–P₂O₅ [8], V₂O₅–Bi₂O₃–BaTiO₃ [9], V₂O₅–MnO–TeO₂ [10] V₂O₅–SnO–TeO₂ [11], Fe₂O₃–V₂O₅–P₂O₅ [12], V₂O₅–Sb₂O₃–TeO₂ [13], etc., were

^{*}Corresponding author. Permanent address: Physics Department, Faculty of Education, Suez Canal University, El-Arish 1854, Egypt. Tel./Fax: + 2025429840.

E-mail address: mmdesoky@yahoo.com (M.M. El-Desoky).

 $^{0921\}text{-}4526/\$$ - see front matter @ 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.physb.2005.06.038

explained by using the 'small polaron' hopping (SPH) model based on the strong electron-lattice interaction in the high temperature regime (above the Debye temperature) [14,15].

It was reported that it is possible to form a glass using Fe₂O₃ ions with a concentration ranging between 15 and 20 mol% [16]. Therefore, it sounds relatively difficult to prepare a glass using high concentration of Fe₂O₃ ions. In our endeavor to obtain Fe-ion-containing-glasses of high conductivity, we were interested in the $Fe_2O_3-Bi_2O_3-Na_2$. B_4O_7 system. This is because its glass formation region and its maximum range of Fe₂O₃ concentration were expected to expand further, considering that B_2O_3 is a good glass network former and Bi₂O₃-containing-glasses could be formed without other conventional network formers by rapid quenching [2,3,17].

In this study, Fe₂O₃-Bi₂O₃-Na₂B₄O₇ glasses were prepared by the press quenching technique, and the DC conductivity was measured to elucidate the conduction mechanism.

2. Experimental

Glass samples were prepared from the reagent grade chemicals Fe_2O_3 (99.9), Bi_2O_3 (99.9) and $Na_2B_4O_7$ (99%). The chemicals in appropriate properties (Table 1) were mixed uniformly. The mixture was melted in the temperature range of 1150-1220°C depending on the compositions for 1 h. The melt was press-quenched between two copper blocks. Glass samples of about 1 mm thick and with an area of 4 cm^2 were prepared. X-ray diffraction (XRD) of the samples wrerecorded using a XRD - 6000 Shimadzo. The thermal

Table 1 Chemical composition and physical properties of Fe₂O₃-Bi₂O₃-Na₂B₄O₇ glasses

behavior was investigated using a Shimadzu DSC-50 differential scanning calorimeter (DSC). The densities of the samples were estimated using Archimedes principle with acetone as an immersion liquid. The concentration of iron ion, $N(cm^{-3})$, was calculated using the formula: $N = dp N_A / (A_w \times 100)$, where d is the density of the sample, p the weight percentage of atoms, N_A the Avogadro's constant and A_w the atomic weight. The Fe²⁺/(Fe²⁺ + Fe³⁺) ratio (C) was determined by Mössbauer spectral analysis at room temperature in a transition geometry employing ⁵⁷Co in a rhodium matrix as the radioactive source. The results obtained were analyzed using a computer program based on the Lorentzing distribution. Electrical measurements were carried out using a Keithly electrometer (Model 485). Silver paste electrodes were deposited on both faces of the polished samples. The absence of barrier layers at the contacts was confirmed by linear I-V characteristics. The DC conductivity of the as-quenched glasses was measured at temperatures between 300 and 473 K.

3. Results and discussion

3.1. Characterization

From the XRD studies it is observed that homogenous glasses were formed for Fe₂O₃ concentration between 5 and 20 mol%. The XRD patterns of present glasses, which is shown in Fig. 1, indicate a glassy behavior with a broad hump at about $2\theta = 30^{\circ}$. No peak corresponding to Fe_2O_3 is observed, which indicates that Fe_2O_3 has completely entered the glass matrix.

Glass no.	Composition (mol%)			W	d	R	$T_{\rm g}$	$\ln\sigma_{(400{\rm K})}$
	Fe ₂ O ₃	Bi ₂ O ₃	Na ₂ B ₄ O ₇	(eV)	(gcm^{-3})	(nm)	(K)	(Sm^{-1})
1	5	20	75	0.89	3.757	0.394	677.2	-7.53
2	10	15	75	0.83	3.706	0.388	678.6	-6.94
3	15	10	75	0.78	3.638	0.382	680.5	-6.44
5	20	5	75	0.62	3.587	0.375	682.7	-5.77

Fig. 1. XRD for different glass compositions.

The glass transition temperature (T_g) of the present glasses was determined by DSC with a heating rate of 10 °C min⁻¹ (Table 1). A relatively small change of T_g (677.2–682.7 K) was observed due to an increase in Fe₂O₃ concentration in the Bi₂O₃ sites [16,18]. This indicates that when Fe₂O₃ is substituted for Bi₂O₃, the Fe–O–Bi and Bi–O–Bi bonds are broken and new bonds such as the Fe–O–Fe bonds are probably formed. This leads to an increase of Fe₂O₃ concentration in the glasses, which causes an increase in their electrical conductivity and thermal stability [18].

Table 1 shows that the glass density (d) decreases with the increase of Fe_2O_3 concentration in the glass. This indicates that the glass structure becomes less tightly packed with increasing Fe_2O_3 concentration. These trends can be explained rather simply as the replacement of heavier cation (Bi) by lighter one (Fe) [18,19].

3.2. Electrical conductivity

Fig. 2 shows the variation of the logarithm of DC conductivity of Fe_2O_3 -Bi₂O₃-Na₂B₄O₇ glasses

as a function of inverse temperature (*T*). As shown in Fig. 3, the conductivity of the glasses increases, while the activation energy decreases with increasing Fe_2O_3 concentration in the glass. This is consistent with the behavior of many other TMO glasses [3–8], where electrical conduction arises

Fig. 2. Temperature dependence of DC conductivity, σ , for different glass compositions. The solid lines are calculated by using the least-squares technique.

Fig. 3. Effect of Fe₂O₃ concentration on DC conductivity, σ , at T = 443 K and activation energy W, for different glass compositions .

from the hopping of electrons or polarons between mixed valence states [17,19]. At high temperatures $(T > \theta_D/2)$, where θ_D is the Debye temperature), the conductivity data of the present glasses can be interpreted in terms of the phonon-assisted hopping model given by Mott and Davis [20], namely

$$\sigma = (\sigma_0/T) \exp\left(-W/kT\right),\tag{1}$$

where $\sigma_{o} = v_{o} N e^{2} R^{2} C(1-C) \exp(-2 \alpha R)/kT$, v_{o} is the longitudinal optical phonon frequency, R is the average distance between the transition metal ion (TMI)), α is the inverse localization length of the s-like wave function assumed to describe the localized state at each site, $C (= Fe^{2+}/\Sigma Fe)$ is the fraction sites occupied by an electron (or polaron) and therefore is the TMI concentration in the low valence state to the total TM ion concentration, and W is the activation energy of the hopping conduction. There is no exact formula to determine C for TMO glasses with transition metal ion. Therefore, used the value of C as shown in Table 1, which was estimated from the Mössbauer spectral. Those values have the same order of magnitude as compared with Fe₂O₃ doped Bi₂O₃-B₂O₃ glasses [18]. The experimental data of conductivity, above a typical temperature $\theta_D/2$ (where non-linear behavior is observed as shown in Fig. 2), are fitted with Eq. (1) by the leastsquared method. The best fit parameters are shown in Tables 1 and 2. The small polaron hopping model predicts an appreciable departure from the linear curve of log σ against 1/T at temperature $\theta_{\rm D}/2$.

Assuming a strong electron-phonon interaction, Austin and Mott showed that [21]

$$W = W_{\rm H} + W_{\rm D}/2 \quad \text{for } T > \theta_{\rm D}/2,$$

= $W_{\rm D} \qquad \text{for } T < \theta_{\rm D}/4,$ (2)

Table 2 Polaron hopping parameters of $Fe_2O_3\mathcal{Bi}_2O_3\mathcal{Bi}_2O_3\mathcal{Bi}_4O_7$ glasses

where $W_{\rm H}$ is the polaron hopping energy, and $W_{\rm D}$ is the disorder energy arising from the energy difference of the neighbors between two hopping sites.

The increase in DC conductivity with increasing Fe_2O_3 concentration, as indicated in Fig. 2, is attributed to the decrease in the average distance R between Fe^{2+} and Fe^{3+} ions. It has been previously reported [3,4,18] that in Fe_2O_3 -doped Bi_2O_3 - B_2O_3 the DC conductivity is electronic and strongly depends on the average distance R. The average distance R is calculated from

$$R = (1/N)^{1/3}, (3)$$

where N is the concentration of iron ions per unit volume, which can be calculated from batch composition and the measured density. The calculated average distance R is shown in Table 1. It is obvious that increasing Fe₂O₃ concentration cause a decrease in the distance between the iron ions. Assuming that the conductivity is due to electron hopping from Fe²⁺ to Fe³⁺, then decreasing R from 0.394 to 0.375 nm, it is reasonable to expect an increase in DC conductivity. At the same time, the activation energy appears to increase with increasing distance between the iron ions. This result suggests that the DC conductivity is controlled by electron hopping, and depends on the distance R [2,3,6,7].

The values of the activation energy and the average distance R are illustrated in Table 1. In the range of measurements, W depends on the site-tosite distance R. This result shows that there is a prominent positive correlation between W and R of transition metal ions. This agrees with the results suggested by Sayer and Mansingh [22], Killias [23], Austin and Garbert [24], delineated

Glass no.	$\theta_{\rm D} \left({\rm K} \right)$	$v_{\rm o} \ (\times 10^{13} \ {\rm s}^{-1})$	$W_{\rm H}~({\rm eV})$	$r_{\rm P}$ (nm)	ε _p	$N(E_{\rm F})~(\times 10^{21}~{\rm eV}^{-1}~{\rm cm}^{-3})$	$\gamma_{\mathbf{p}}$
1	752	1.566	0.86	0.159	22.49	4.538	26.25
2	766	1.595	0.81	0.156	24.18	5.046	24.52
3	786	1.637	0.75	0.154	26.58	5.710	22.13
4	816	1.699	0.60	0.151	33.86	7.545	17.06

the dependence of W on the Fe–O–Fe site distance.

Fig. 4 shows the electrical conductivity, σ , and the fraction of reduced transition metal ion *C*, as a function of Fe₂O₃ concentration in the present glasses. Fig. 4 shows that the electrical conductivity, σ , for the present glasses, is within an order of magnitude of that of iron borate glasses [2,3,18]. Since the electrical conduction in iron borate glasses is assumed to be due to electron hopping from Fe²⁺ to Fe³⁺ sites [18]. Also, it is clear that *C* increases with increasing Fe₂O₃ concentration; a similar behavior is shown for the electrical conductivity results. This indicates that the mechanism of electrical conductivity of present glass samples were understood by SPH between iron ions under different valance states [6,7].

The optical phonon frequency v_o , in Eq. (1), was estimated using the experimental data from Table 1, and according to the formula $k\theta D = hv_o$ (where *h* is Plank's constant) [3,23]. To determine v_o for all different compositions, the Debye temperature θ_D was estimated by $T > \theta_D/2$ (Eq. (2)). θ_D of the present glasses was obtained to be in the range of 752–816 K, which are nearly the same values as that of V₂O₅–P₂O₅ [25] and alkaline silicate glasses [26]. Thus, these estimated θ_D values are physically reasonable. The calculated values of θ_D and v_o are summarized in Tables 1 and 2. Moreover, W is expressed in terms of the density of states at Fermi level $N(E_{\rm F})$ as follows [20]:

$$N(E_{\rm F}) = 3/4\pi R^3 W \tag{4}$$

we obtained $N(E_{\rm F}) = 4.538 \times 10^{21} - 7.545 \times 10^{21} \,{\rm eV^{-1}\,cm^{-3}}$, as shown in Table 2 with the estimated *W* and *R* values (Table 1). The values of $N(E_{\rm F})$ are reasonable for a localized states.

The nature of polaron hopping mechanism (adiabatic or non-adiabatic), of all these glasses, can be estimated from a plot of logarithm of the conductivity against activation energy at fixed experimental temperature T [5,15]. It is expected that the hopping will be in the adiabatic regime if the temperature estimated $T_{\rm e}$, from the slope of such a plot, is close to the experimental temperature T. Otherwise the hopping will be in the nonadiabatic regime. In this way, hopping at higher temperatures is inferred to be in the adiabatic regime for the vanadate glasses with conventional glass formers [6]. From the plot of $\log \sigma$ against W for the present glasses (Fig. 5), the estimated temperatures (shown within parenthesis) obtained from the slopes, are quite different from the experimental temperature (shown outside the parenthesis). Fig. 6 presents the effect of Fe_2O_3 concentration on the pre-exponential factors obtained from the least squares straight line fits

Fig. 4. The DC conductivity, σ , at 343 K and TM ion ratio, *C*, for different glass compositions.

Fig. 5. Effect of activation energy W, on DC conductivity, σ , at T = 443 K for different glass compositions.

Fig. 6. Effect of Fe₂O₃ concentration on pre-exponential factor, σ_{o} , for different glass compositions.

of the data σ_0 . The figure indicates a decrease in σ_0 with Fe₂O₃ concentration from 5 to 20 mol%. From the above results, we conclude that the conduction mechanism in the present glasses is due to non-adiabatic hopping of the polarons [5,15]. This non-adiabatic conduction mechanism is further confirmed from the calculation of the polaron bandwidth (*J*) from the following relation [27]:

$$J > \left(\frac{2kTW_{\rm H}}{\pi}\right)^{1/4} \left(\frac{hv_{\rm o}}{\pi}\right)^{1/2} \quad \text{(adiabatic)}$$

and
$$J < \left(\frac{2kTW_{\rm H}}{\pi}\right)^{1/4} \left(\frac{hv_{\rm o}}{\pi}\right)^{1/2} \quad \text{(non-adiabatic)},$$
(5)

where *J* is the polaron bandwidth related to the electron wave function overlap on the adjacent sites. The > and < are for adiabatic and non-adiabatic hopping, respectively. The values of $(2kTW_{\rm H}/\pi)^{1/4}$ $(hv_{\rm o}/\pi)^{1/2}$ varies from 0.0507 to .0533 eV at 400 K for all glassy compositions. The values of *J*, independently estimated from the relation; $J = e^3 [N(E_{\rm F}) \epsilon_{\rm p}^3]^{1/2}$, are found to be in the range of 0.022–0.035 eV depending on the concentration (Fe₂O₃ = 5–20 mol%). These values of *J* are much smaller than those estimated from the

right-hand side of Eq. (5) confirming non-adiabatic hopping conduction for these glasses.

Next, using the average distance values R, given in (Table 1), polaron radius r_p can be calculated using the formula [28]

$$r_{\rm p} = \left(\frac{\pi}{6}\right)^{1/3} \frac{R}{2},$$
 (6)

where r_p was found to be between 0.151 and 0.159 nm (Table 2) for values of *R* ranging between 0.375 and 0.394 nm (Table 1). The polaron hopping energy given by $W_{\rm H} = W_{\rm p}/2$ is expressed by Sayer et al. [29]

$$W_{\rm H} = W_{\rm p}/2 = \left(\frac{e^2}{4\varepsilon_{\rm p}}\right) \left(\frac{1}{r_{\rm p}} - \frac{1}{R}\right),\tag{7}$$

where $1/\varepsilon_{\rm P} = 1/\varepsilon_{\infty} - 1/\varepsilon_{\rm o}$, and $\varepsilon_{\rm o}$ and ε_{∞} are the static and high-frequency dielectric constant of the glass respectively, and $\varepsilon_{\rm P}$ the effective dielectric constant. The values of $r_{\rm p}$, $\varepsilon_{\rm P}$ and $W_{\rm H}$ are given in Table 2.

The values of small polaron coupling constant $\gamma_{\rm p}$, which is a measure of electron–phonon interaction, is given by the formula $\gamma_{\rm P} = 2W_{\rm H}/hv_{\rm o}$ were also evaluated for the present glasses [15]. The estimated value of $\gamma_{\rm p}$ is in the range of 17.06–26.25 (Table 2), which is larger than those for V₂O₅–Bi₂O₃ glasses doped with BaTiO₃ (7.05–7.60) [30,31]. Such large values give an indication of a strong electron phonon interaction of the present glasses [6,7,15].

Finally, the hopping carrier mobility μ is expressed for non-adiabatic hopping conduction as [15],

$$\mu = \left(\frac{eR^2}{kT}\right) \left(\frac{1}{\hbar}\right) \left(\frac{\pi}{4W_{\rm H}kT}\right)^{1/2} J^2 \exp(-W/kT),\tag{8}$$

where μ values were calculated for T = 400 K with the data of W, R, J and $W_{\rm H}$ given in Tables 1 and 2. The hopping carrier concentration $N_{\rm c}$, is then obtained using the well-known formula $\sigma = eN_{\rm c}\mu$. Table 3 show these results, which indicate that μ values increase with increasing Fe₂O₃ concentration. μ values were evaluated to be between 8.17×10^{-5} and 3.66×10^{-8} cm² V⁻¹ s⁻¹ and $N_{\rm c}$ values between 1.29×10^{17} and 5.04×10^{18} cm⁻³, being in the same order as those for NiO–V₂O₅–

Table 3 Hopping carrier mobility, μ , and carrier density, N_c , of Fe₂O₃-Bi₂O₃-Na₂B₄O₇ glasses

Glass no.	$\mu (\mathrm{cm}^2 \mathrm{V}^{-1} \mathrm{s}^{-1}) (400 \mathrm{K})$	$N_{\rm c} ({\rm cm}^{-3}) (400 {\rm K})$
1	3.66×10^{-8}	5.04×10^{18}
2	1.99×10^{-7}	3.60×10^{18}
3	8.25×10^{-7}	2.74×10^{18}
4	8.17×10^{-5}	1.29×10^{17}

TeO₂ glasses [6]. Because the localization condition for hopping electrons was given by $\mu \ll 0.01 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}[15]$, these small μ values confirmed that hopping electrons in the present glasses are localized mainly at iron sites, corresponding to the strong electron–lattice interacting the large γ_{P} [6].

4. Conclusions

Glasses in the system Fe₂O₃–Bi₂O₃–Na₂B₄O₇ were prepared using the press-quenching technique from the glasses melts and the DC conductivity was investigated. The conduction of the present glasses was confirmed to be due to primarily non-adiabatic hopping between Fe²⁺ and Fe³⁺ ions in the glass network. The small polaron coupling γ_p was large (17.06–26.25). The estimated hopping mobility was in the range of 3.66×10^{-8} – 8.17×10^{-5} cm²V⁻¹s⁻¹. The carrier density was estimated to be between 1.29×10^{17} and 5.04×10^{18} cm⁻³ at 400 K. The principal factor determining conductivity was the polaron hopping mobility in these glasses.

References

- H. Hirashima, Y. Watanabe, T. Yoshida, J. Non-Cryst. Solids 95/96 (1987) 825.
- [2] Y. Sakuri, J. Yamaki, J. Electrochem. Soc. 132 (1985) 512.
- [3] A. Al- Hajry, A.A. Soliman, M.M. El- Desoky, Thermochim. Acta 427 (2005) 181.

- [4] M.M. El-Desoky, A. Al- Shahrani, J. Mater. Sci.: Mater. Electron. 16 (2005) 221.
- [5] M. Sayer, A. Mansingh, J. Non-Cryst. Solids 42 (1980) 357.
- [6] M.M. El-Desoky, J. Mater. Sci.: Mater. Electron. 14 (2003) 215.
- [7] M.M. El-Desoky, I. Kashif, Phys. Stat. Sol. (a) 194 (1) (2002) 89.
- [8] M. Sayer, A. Mansingh, J.M. Reyes, G. Rosenblatt, J. Appl. Phys. 42 (1991) 2857.
- [9] S. Chakraborty, M. Sadhukhan, D.K. Modak, B.K. Chaudhuri, J. Mater. Sci. 30 (1995) 5139.
- [10] K. Sega, Y. Kuroda, H. Sakata, J. Mater. Sci. 33 (1998) 1303.
- [11] H. Mori, K. Gotoh, H. Sakata, J. Non-Cryst. Solids 183 (1995) 1228.
- [12] H. Hirashima, M. Mitsuhashi, T. Yoshida, J. Ceram. Soc. Jpn. 90 (1982) 411.
- [13] H. Mori, T. Kitami, H. Sakata, J. Non-Cryst. Solids 168 (1994) 157.
- [14] A. Miller, E. Abrahams, Phys. Rev. 120 (1960) 745.
- [15] N.F. Mott, Adv. Phys. 16 (1967) 49.
- [16] T. Hirashima, F. Tanaka, Seramikkusu Ronbunshi 97 (1989) 1150.
- [17] H.H. Qiu, H. Sakata, T. Hirayama, J. Ceram. Soc. Japan 104 (1996) 1004.
- [18] H.H. Qiu, T. It, H. Sakata, Mater. Chem. Phys. 58 (1999) 243.
- [19] A. Al-shahrani, A. Al-Hajry, M.M. El- Desoky, Phys. Stat. Sol. (a) 200 (2003) 378.
- [20] N.F. Mott, E.A. Davis, Electronic processes in Non-Crystalline Materials, Clarendon, Oxford, 1979.
- [21] I.G. Austin, N.F. Mott, Adv. Phys. 18 (1969) 41.
- [22] M. Sayer, A. Mansingh, J. Non-Cryst. Solids 58 (1983) 91.
- [23] H.R. Killias, Phys. Lett. 20 (1966) 5.
- [24] I.G. Austin, E.S. Garbet, in: P.G. Le Comber, J. Mort (Eds.), Electronic and Structural Properties of Amorphorus Semiconductors, Academic Press, New York, 1973, p. 393.
- [25] M.B. Field, J. Appl. Phys. 40 (1969) 2628.
- [26] H. Nasu, K. Hirao, N. Soga, J. Am. Ceram Soc 64 (1981) C63.
- [27] D. Emin, T. Holstein, Ann. Phys. (NY) 53 (1969)439;
 L. D. Friedman and T. Holstein, Am. Phys. (NY) 21(1963) 494.
- [28] V.N. Bogomolov, E.K. Kudinov, Yu. Firsov, Sov. Phys. Solid State 9 (1968) 2502.
- [29] M. Sayer, A. Mansingh, J.M. Reyes, G. Rosemblatt, J. Appl. Phys. 42 (1971) 2857.
- [30] A. Ghosh, J. Appl. Phys. 66 (1989) 2425.
- [31] M.H. Cohen, J. Non-Cryst. Solids 4 (1970) 391.