
 - 1 -

Design and Implementation of Sensor Tag Middleware for Monitoring
Containers in Logistics Systems

Md. Kafil Uddin, Gihong Kim, Bonghee Hong
Department of Computer Engineering, Pusan National University, Republic of Korea

e-mail:{mdkafil,buglist,bhhong}@pusan.ac.kr

Abstract

Sensor tag having user memory can be used both

for identification and storing sensor data. Monitoring
sensor data in container is a big issue in logistics
system. Containers in logistics system generate huge
amount of sensing information which requires
handling efficiently to provide response to the user
queries. Moreover, collection of sensor data from
sensor tag by using heterogeneous reader devices is
also a big challenge in sensor tag deployment. To
achieve these goals, a flexible middleware is needed
that provides glue between applications and the
heterogeneity of devices by facilitating optimized set of
services at high performance to a scalable number of
users.

In this paper, we propose Sensor Tag Middleware
architecture that incorporates characteristics of
standard EPCglobal middleware with several unique
features such as reader abstraction, integration, high
performance and scalability. In order to illustrate our
proposed middleware we implement it for monitoring
containers in port logistics.

1. Introduction

Recent advances in sensor technology, wireless
Radio Frequency (RF) communications, and digital
electronics have enabled the development of low-cost,
low-power, multifunctional RF capable sensor tags
that are small in size and can transfer data to the reader
when it is in reader interrogation area. Such tags are, in
general, characterized by RF identification, user
memory and sensing information. A large number of
such tags can be deployed in container management in
logistics systems to provide container information such
as temperature, humidity, light and pressure as well as
container security like door open or lock information.
Thus, it is possible to create a physically linked world
in which every container is numbered, identified,

cataloged and tracked with various sensing
information. However, these types of containers are
widely used in Logistics Systems such as port logistics.

Sensor Technology has recently begun to find

greater use in container management in port logistics,
cold chain management [9] and supply chain
management. In these domains sensor technology
holds the promise to eliminate many existing business
problems by bridging the gap between the virtual
world of IT systems and the real world of products and
logistical units. Common benefits include safe
container transportation, more efficient material
handling processes, quality control of temperature-
sensitive perishables with continuous stationary
monitoring, elimination of container damage due to
huge inside pressure, and automatic tracking of
product location in supply chain. However, the
growing diversity of application and available
hardware and software platform demands developers
and administrators to come up with specialized
software and deployment strategies for each of the
platforms [7]. This is a time consuming and tedious
task which in other, admittedly more “stable” domains
has been addressed by abstracting from the physical
view of a system to a logical model and implementing
this logical model in terms of a middleware [10]. The
general purpose of middleware systems is to provide
powerful abstractions codifying the essential
requirements and concepts of a domain and providing
flexible means for extending it to the concrete physical
environment [6]. This speeds up deployment and
additionally pushes standardized APIs which simplifies
application development and applications become
“portable” over all physical systems included in the
middleware. Moreover, well designed middleware
architecture enables application modularity, adaptivity
and repairability [8] by providing flexibility in
architecture with the change in requirements.

 - 2 -

We develop state-of-the-art sensor tag Middleware
for Monitoring Containers (MMC), an integrated
sensor tag middleware with RFID (Radio Frequency
Identification) middleware compatible with EPCglobal
architecture [4]. It supports reader abstraction for
heterogeneous readers and increases performance and
scalability by providing continuous query processing
for sensing information.

In this work, we have analyzed those requirements

the sensor tag middleware components should meet in
order to manage containers with large deployments of
tags having sensing capabilities, diverse heterogeneity
in reader devices, and the amount of data those readers
capture. The main contribution of this paper is to
design software components for sensor tag
middleware, which addresses both application needs
and the constraints of sensor technology.

This paper is organized as on the basis of following

sections. In Section 2, we list related works. Section 3
we illustrate the design and implementation of MMC
with some unique features. We conclude Section 4
with avenues for further research.

2. Related works

2.1. EPCglobal Architecture

The EPCglobal Inc. [5] provides standard
architecture for middleware framework. The
architecture framework consists of three layers: (1)
Identification layer, (2) Capture layer and (3)
Exchange layer. EPCglobal provides several standards
at all the three layers such as Data Standards, Interface
Standards and standards that are under development.
Therefore, importance given on EPCglobal standards
in designing middleware architecture that helps easy
adaptation of the system over the world.

The EPCglobal NetworkTM [4] is a set of global

technical standards aimed at enabling automatic and
instant identification of items in the supply chain and
sharing information throughout the supply chain. It
defines standard specification for RFID middleware,
typically known as Application Level Event (ALE).
Reader collects tag data and sends to the middleware
(ALE) by using Reader Protocol (RP) [3]. ALE
performs collection, filtering and grouping on tag
events send by the Reader. Following figure1 shows
ALE framework defined by EPCglobal.

Figure1. EPCglobal Middleware Framework

2.2. Application Level Event (ALE)

The EPCglobal specifies standard specification for

ALE 1.1[1]. It consists of four specs: (1) Reading API
(ECSpec), (2) Writing API (CCSpec), (3) Tag Memory
(TMSpec) API, (4) Logical Reader (LRSpec) API and
(5) Access Control (ACSpec) API. The key
characteristic of ALE Reading API is duplicate data
removal. Tags may be read several times within an
event cycle where event cycle is the smallest unit of
time defined by the ALE client. Reading API reduces
middleware load by filtering data duplication. Writing
API provides API for writing to the tags by ALE
Clients. Clients define command cycle, the smallest
unit of time, to write to tags. Various commands such
as kill, lock, pwd, etc. are defined by the Writing API.
Thus, Writing API facilitates ALE clients to write
“user data” to the tags having “user memory”.
However, for accessing tag memory, ALE provides an
interface, called TMSpec, through which clients can
define symbolic names that refer to data fields to tags.
The key role of TMSpec is mapping tag memory
address to its logical name so that clients can read and
write to the memory bank without using it physical
address value. LRSpec is an interface through which

 - 3 -

clients may define logical reader names instead of
using physical reader names and ACSpec facilitates
with the API by which access rights can be configured
for various clients.

2.3. Gen2 Tag Memory Architecture

The EPCglobal specifies standards that provide full
access to the functionality to the EPCglobal UHF Class
1 Gen 2 specification [2], when interacting with Gen2
tags. This includes reading and writing all memory
banks, enabling users to write user memory bank
which can further be used to store sensing information
from any sensor device. Figure 2 shows Gen2 tag
memory architecture. It consists of four memory
banks: Reserved Bank (00), EPC Bank (01), TID Bank
(10) and User Bank (11). The Reserved Bank is used
for future use, EPC Bank stores Electronic product
code, TID Bank stores Tag identification and the User
Bank is used to store user related information. This
bank can be used for any user purposes. Here in our
MMC we used this user memory bank for storing
sensing information. The memory architecture of Gen2
tag user memory consists of several individual memory
blocks.

 Figure 2. Gen2 Tag Memory Architecture

Each memory block in the user memory can be used to
store different user related information which can
further be used to store sensing information. Thus,
Gen2 tag with sensor device can act as sensor tag and
capable of serving dual act of identification and
sensing information.

3. Design and Implementation of MMC

The architectural design and implementation of our
MMC Sensor Tag Middleware comprised of several
distinctive features that made it solely performed
among all other existing sensor tag middlewares. In
this section, we have summarized the key features of
our MMC, its layered design and finally we explain
about its implementation.

3.1. Features of MMC

While combining multiple application protocols
into a large, adaptive and self-updating protocol is
possible, our Sensor Tag Middleware has several
unique features over other sensor middlewares.

3.1.1. Integration. Figure 3 depicts the integrated
MMC which is an extension of EPCglobal standard
Middleware. EPCglobal standard middleware collects
data from passive tags and our extended integrated
Middleware collects streaming sensing information
both from passive and active tags. As active tag has
user memory, we use its user memory for collecting
sensing data. The advantage of using active tag as
sensor tag is that it responds only when middleware
requests for sensing information. Thus reduces both
communication overhead and significant reduction in
battery power. Our MMC receives sensing related user
queries and performs queries on user memories and
sends response to the users.

Figure 3. Integrated MMC

3.1.2. Abstraction. It is one of the key features of our
middleware. We provide two types of abstractions in
our middleware: Independence of reader heterogeneity
and Logical naming for physical tag address. Firstly,
reader heterogeneity is a big issue in designing well
structured middleware. We find there are many
vendors exist who provide readers to collect tag data
from various tags. They are of two types: one is
Reader Protocol (RP) complaint readers and other is
non-RP complaint readers. RP complaint readers
follow standard RP protocol whereas non-RP
complaint readers do not follow RP protocol. Since
non-RP complaint readers follow their own vendor
specifications, middleware need to provide individual
API and Adapter for each vendor specific readers.
Figure 4 shows our Reader Abstraction Framework for
MMC that provides an independent framework from
types of readers.

 - 4 -

Figure 4. Reader abstraction framework for MMC

Secondly, while combining multiple reader
protocols into a large, adaptive and self-updating
protocol, our middleware uses abstraction for
accessing physical memory block of tag memory by
using logical

Figure 5. Storing sensor data in Gen2 User Memory

address name. Figure 5 depicts the Gen2 tag user
memory architecture where user memory of Gen2 tag
is used for storing various sensing information such as
temperature, moisture, pressure, light etc. Recall that
the key feature of TMSpec is mapping from logical
name to physical address. Therefore, it is possible to
provide logical name for each memory block holding
sensing information. Our MMC uses key feature of
TMSpec that provides logical name for accessing each
physical address of the tag memory storing sensor data.
Hence, hides the details of underlying memory
architecture of sensor tag.

3.1.3. Extensibility. There are two ways to access
sensing information from the middleware: Direct
function call and Indirect function call. In case of
direct function call, each sensing data is accessed by
using individual method provided by the API.
Therefore, middleware requires extending or
modifying methods if any new sensing storage is
added to the tag memory or if there is modification
done on physical storage. Figure 6 shows the detailed
methods for accessing sensing information in tag
memory. On the other hand, indirect function call uses
memory mapping technique to address to the logical
name of memory address following the mapping rules
specified in TMSpec. Therefore, accessing any
memory address for sensing information requires only
one method that uses memory address as its parameter.
Thus reduces the

Figure 6. Direct and Indirect function call from
Middleware

methods and API to access to reader from middleware.
Figure7 shows method elimination technique in

Figure 7. Methods elimination by using Indirect
function call

indirect function call. Our MMC provides extensible
middleware architecture by implementing indirect
function call instead of using direct function call for
accessing sensing information. Therefore, no need to
change system architecture even though physical
storage address of tag memory is changed, extended or
modified.

3.1.4. High Performance and Scalability. The
question of high performance has always to be seen to
the questions of response time. Incase of only few
requests or queries to be processed, too much care
about performance is not necessarily required.
However, sensor middlewares have many applications,
users and queries. Having thousands of queries to be
processed (in short period of time) requires a well
designed system, being able to bear the burden. We
used Continuous Query Index (CQ Index), shown in
Figure 8, to process enormous queries efficiently.
Continuous Query Manager (CQ Manager) receives
queries from user applications. After receiving queries
it builds query index (representing query using spatial
data structure that improves the speed of operation) on
stored queries. The reader interface receives streaming
sensor data from the sensor tag. Sensor data is send to
the query index to get the query result. CQ index sends
it to the CQ manager. Finally, CQ manager delivers
that result in response to the query issued by the user.

 - 5 -

Figure 8. Continuous Query Processing in MMC

Thus, a quick and fast response is possible to generate
for a significant number of user queries without
degrading system performance.

3.2. Architecture of MMC

Figure9 shows the detailed MMC architecture. It
consists of three layers: Application Layer (Web
Service), Core Engine Layer (MMC Engine- Sensor
Middleware) and Reader Abstraction Layer (Adapter
Framework).

Figure 9. 3-Layer MMC Architecture

3.2.1. Application Layer. This is the upper layer of
the Middleware. It contains web services and provides
clients access to sensing information via Web Service
API. Our system provides independence from
application using Common Application Interface and
Common Application Query. We used Common
application interfaces provided by EPCglobal, which
are Tag Memory Specification API, ALE Reading
API, ALE Writing API, ALE Logical Reader API and
Access Control API. Web applications use standard
protocols (HTTP, TCP and File) to send queries to the
MMC sensor Tag middleware. Applications can also
send their queries to the middleware by using Remote
Method Invocation (RMI). MMC Engine uses running
thread Listener to receive user queries.

3.2.2. Core Engine Layer. This layer consists of Core
MMC Engine. It contains several Modules, Sensor
Database and Loggers. SensorDB stores all the sensing
information stored by the sensors for certain period of
time. Indexing Module uses CQ Index for fast
response to the user queries. The Query Processor
Module parses and processes the query received from
applications. Query contains logical name of tag
memory address requesting sensing data. The Sensor
Tag Address Mapping Module maps the user
mentioned logical name for sensing information to the
physical address value. Continuous sensor events are
collected from reader by the Event Collection Module
and Event Filter Module filters the streaming sensor
events according to the filtering condition specified by
users. Finally, reports are generated by the Report
Generator Module and middleware sends the generated
report to the corresponding user in response to the
query issued by that user. Moreover, our MMC
provides three types of Loggers (TCP Logger, HTTP
Logger, and File Logger) to log the users accessed
asynchronously to the middleware.

3.2.3. Reader Abstraction Layer. The lowest level of
MMC is Reader Abstraction Framework. This layer is
used for providing reader independence to the
middleware. It consists of two types of modules:
Reader protocol and Adapters. The Reader protocol
module is used to communicate and transfer data
handling between RP complaint readers and the
middleware whereas for each non-RP complaint
readers individual adapter is used for communication
between reader and middleware. Thus Reader
Abstraction Framework provides seamless link
between the Sensor Tag Middleware and various types
of readers collecting sensor events. This layer allows
users to configure, monitor and control reader devices
without knowing details about reader types. It supports
XML-based reader control methodology to control
reader specific features.

3.3. Implementation of MMC

 We have implemented our MMC sensor
middleware for monitoring containers in the port
logistics. Sensor tags are attached to each container. As
each tag has its unique id, it is possible to identify and
track the container along with sensing information.
Our middleware is possible to provide asynchronous
alarm notification to the client whenever sensing
information exceeds certain threshold limit set by the
user. Thus it helps safe monitoring of containers and
it’s inside status. Moreover, MMC can provide door
status of containers by using illumination sensor. To

 - 6 -

illustrate our implementation of MMC we consider
four implementation scenarios: (1) Collection of Tag
Lists (2) Collection of Sensing Information (3) Door
Status (open/close) and (4) Alarm Notification. All the
four implementation scenarios are described in the
following sections.

3.3.1. Tag List Collection. We attach sensor tag to
each container. According to the clients requests reader
reads the containerId by reading tagId of each
container and sends to the middleware. Middleware
collects all the tag lists of monitored containers. Figure
10 shows the list of tags collected by MMC.

Figure 10. Collection of Tag lists by MMC

3.3.2. Sensing Information Collection. Figure 11
shows the collection of sensing information by our
MMC. We deploy several sensor devices

Figure 11. Collection of sensing information by MMC

with each container. For example, heat lamp is
attached to the container that generates heat and light.
The temperature sensor collects the sensing
information and sends to the sensor tag attached to the
container. The Thermo Threshold meter monitors
whether the temperature goes above the threshold
limit. Thus, collected temperature values are stored in
the tag memory. To respond to the user’s query, reader
read the intended memory address of the tag to get the
sensing information.

3.3.3. Door Status (Open/Close). Monitoring door
status is one of the most important requirements for
monitoring container security in logistics systems.
Light or temperature sensitive items or perishable
goods inside the container may be damaged due to
uncontrolled light and temperature. To fulfill these
requirements we use light sensitive sensor inside the
container that monitors light intensity in the container
and decides whether the door is open or closed and
responds to the middleware accordingly. Figure 12
shows the door status of each container in our logistics
implementation.

Figure 12. Containers Door status by MMC

3.3.4. Alarm Notification. Application users require
sending alarm if certain unwanted situation occurs.
Our MMC provides interface to clients for setting
certain threshold values for sensing data. It also allows
users to set some alarm conditions. When sensing
information exceeds threshold limit or fulfills alarm
conditions middleware sends asynchronous alarm
notification to the corresponding client. Thus provides
safe system monitoring. Figure 13 depicts the alarm
notification generated automatically when temperature
exceeds the limit 30 degree.

 - 7 -

Figure 13. Alarm notification by MMC

To illustrate our system we have implemented
MMC in Intelligent Research and Develop Center
(ICC) and Logistics Information Technology (LIT),
Korea. We developed MMC GUI by using JAVA
(JDK 6.0), We have also used several software tools
such as Sun Server, Tomcat Web-server (version 6.0)
and Smart UML (version 5.0.2).

4. Conclusion

In this paper, we have discussed about the detailed
architecture and features of Sensor Tag Middleware.
Tag memory in the sensor tag can be used for storing
various sensing information. Different types of sensing
information can be stored in the user memory of same
sensor tag. Sensor tag can be deployed in containers in
logistics system. We implemented Sensor Tag
Middleware for efficient and continuous monitoring of
containers in the logistics system. Our featured
middleware can solve the problem of heterogeneity of
various reader types such as RP complaint readers and
non-RP complaint readers by using reader abstraction
layer in the middleware. Mapping of name to address
in tag memory is the key feature of TMSpec mentioned
in EPCglobal standard specification ALE 1.1.Our
middleware provides independence of architecture by
incorporating this feature to our middleware whenever
tag memory is extended or new sensing information is
required to access from sensor tags. Furthermore, it is
an integrated middleware compatible with EPCglobal

standard architecture that facilitates optimized set of
services at high performance to a scalable number of
users. Here, we have analyzed the requirements of
sensor tag middleware, derived its key features, and
then we came up with designing the architecture and
finally, summarize all its functional operations. Our
future research work lies on the unification of RFID
middleware, RTLS middleware and Sensor
middleware into one so that all three types (RFID,
RTLS and Sensor) of tag data can be processed by
using a single middleware.

Acknowledgements

This work was fully supported by Intelligent Research
and Develop Center (ICC) and Logistics Information
Technology (LIT), Korea.

5. References

[1] EPCglobal Inc., “The Application Level Events (ALE)
Standard Specification Version 1.1” February 27, 2008.

[2] EPCglobal, “EPCTM Radio-Frequency Identity Protocols
Class-1 Generation-2 UHF RFID Protocol for
Communication at 806 MHz – 960 MHz Version 1.0.9”,
EPCglobal Standard , January 2006.

[3] EPCglobal Inc., “The Reader Protocol Standard, Version
1.1”, Ratified Standard June 21, 2006.

[4] EPCglobal Inc., “The EPCglobal Architecture
Framework, EPC global Final Version 1.2”, Approved 10
September 2007.

[5] EPCglobal website. www.epcglobalinc.org

[6] A. Kabir, B. Hong, W. Ryu, S. Ahn, ”LIT Middleware:
Design and Implementation of RFID Middleware”, In
proceedings of Dynamics In Logistics, LDIC 2007, Bremen,
Germany, August 2007.

[7] C. Floerkemeier, M. Lampe “RFID middleware design –
addressing application requirements and RFID constraints” ,
Joint sOc-EUSAI conference, Grenoble, October 2005.

[8] T. Liu, M. Martonosi, “Impala: A Middleware System for
Managing Automatic Parallel Sensor Systems” PPoPP’03,
June 11-3, 2003, San Diego, California, USA.

[9] Cold Chain Applications http://www.sensitech.com/
applications/coldstream_ccm/index.htm

[10] K. Aberer, M. Hauswirth, A. Salehi, “A Middleware for
Fast and Flexible Sensor Network Deployment”, VLDB’06,
September 12-15, 2006, Seoul , Korea.

