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Abstract—RFID technology enables a new era of business 
optimization. With the development of RFID technology, more 
and more RFID applications have been developed. In RFID 
system, RFID middleware collects, filters, and integrates large 
volume of streaming data gathered continuously by 
heterogeneous readers to process queries from applications. 
These queries are called continuous queries as they are executed 
continuously to extract useful information from data streams.  
EPCglobal proposed an Event Cycle Specification (ECSpec) 
model, which is a de facto standard query interface for RFID 
middleware.  When the middleware system processes many 
continuous queries, query optimization is quite important for 
their execution and enhancing the performance of the system. In 
this paper, we propose a multiple continuous query optimization 
method for RFID data streams, which is based on query (ECSpec) 
execution conditions and filter conditions analysis.  

Keywords-RFID middleware; Continuous queries; Query 
optimization. 

I.  INTRODUCTION 
The Radio Frequency Identification (RFID) as a frontier 

technology is an automatic identification and data capture 
technology that uses RF waves to transfer data between a 
reader and a tag which attached on an object. RFID provides 
fast, reliable, and automatic identifying, locating, tracking and 
monitoring physical objects without line of sight. With such 
benefits, RFID is gradually being adopted and deployed in 
various applications, such as supply chain management 
systems, warehouses management, assets tracking, and 
ubiquitous computing applications, etc.  

RFID system mainly consists of four components: tags, 
RFID transceivers or readers, RFID middleware, and RFID 
application [1, 2]. Tags store the unique ID (EPC code) and 
related data in their memory to uniquely identify the object. 
Readers are used for reading the information stored at RFID 
tags placed in their interrogator zone and sending the streaming 
data to middleware through wired or wireless interfaces. 
Middleware systems collect data from readers, process 
receiving data according to the requests of applications, and 
generate reports sending to applications. Applications are the 
software components which issue requests to middleware and 
provide business services to users, such as supply chain 
management or warehouses management. 

In the RFID system, middleware should process the high 
volume of raw RFID streaming data to reply the requests of 
applications. These requests are called continuous queries [3, 4] 
because they are executed continuously to extract information 
from data streams. These queries are usually triggered by 
special events such as the arrival of new data items from data 
streams or system timer alarms, get useful information from 
data streams by filtering, compose new information joining 
multiple data streams, and send query results to users. When 
users register many continuous queries, middleware system 
processes these queries continuous over large volume of 
streaming data. It may result the response delay or even burden 
for middleware, so multiple query optimization is quite 
important for efficient execution and enhancing the 
performance of middleware system. 

For collecting, filtering, and grouping RFID streaming data, 
EPCglobal proposed an Event Cycle Specification (ECSpec*) 
model [5], which is a de facto standard query interface for 
RFID middleware. ECSpec can be treated as continuous query 
defined by users and continuously executed in middleware, 
which has execution and filter conditions. Once an ECSpec 
defined by user, it will be subject to a lifecycle state transition 
specified in the ECSpec. An ECSpec must specify start 
conditions and stop conditions which together define a time 
interval to extract information of interest from data streams and 
generate the results. Queries having the same operators may 
share a lot of intermediate results when they are executed at 
close instants, but may involve only disjoint data when 
executed at completely different instants. So, query execution 
timing as well as common query predicates is a key to deciding 
an efficient query execution plan. In this paper, we analysis the 
properties of ECSpec to identify the execution patterns and 
query conditions of it. Such patterns offer useful information 
for optimizing the execution of multiple continuous queries. By 
using this information, we form clusters of continuous queries 
such that queries in the same cluster are likely to share the 
intermediate result, extract common conditions from queries in 
each cluster, and decide the optimal query execution plan. 

The remainder of this paper is organized as follows. Section 
2 presents some related work on continuous queries 
optimization. Section 3 analyzes and explains ALE and RFID 
continuous query execution model (ECSpec). Section 4 
presents the proposed query optimization technique. Finally, 
Section 6 concludes the paper with the future work. 

* We use the term ECSpec and query interchangeably throughout the paper. 
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II. RELATED WORKS 
There are many research efforts have been made on 

continuous queries processing and continuous queries 
optimization. OPenCQ[4] is a system integrating distributed 
heterogeneous information sources and supports continuous 
queries. Continuous queries in OpenCQ consist of three parts: 
query conditions, trigger condition, and terminal condition. 
When the trigger condition is satisfied, the query is executed 
continuously until the terminal condition is satisfied. However, 
sophisticated multiple query optimization is not addressed. 

NiagaraCQ [6, 7] proposes a multiple query optimization 
method for its continuous queries. It can handle large-scale 
queries and supports incremental multiple queries optimization. 
Simple selection predicates are grouped by their expression 
signatures and evaluated in chains. However, continuous 
queries in NiagaraCQ are simple and do not use window 
operators to specify time intervals of interest as in the window 
join, which is not suitable for extracting useful information 
from RFID data streams.  

TelegraphCQ [8] is another system designed to process a 
large number of continuous queries. Based on eddy [9], it 
realizes adaptive processing, dynamically reordering operators 
to cope with changes of arriving data properties and selectivity, 
and supporting multiple queries optimization by grouping and 
indexing individual predicates. CACQ evaluates queries 
aggressively; it picks up operators as soon as they become 
executable and evaluates them immediately. In cases where 
queries are associated with window-based time intervals and/or 
the execution time specifications, this query evaluation method 
may generate more redundant query results than are needed. 

ARGUS [10] is a stream processing system implemented 
atop commercial DBMSs to support large-scale complex 
continuous queries over data streams. It supports incremental 
operator evaluation and incremental multiple query plan 
optimization as new queries arrive. It builds a whole query 
network for all the queries, which costs time to maintain a big 
query network.  

There are some other works also related to data stream 
processing. In [11] it split and merge query conditions, and 
sends the common condition to the reader level to reduce the 
duplicated data. It doesn’t consider sharing of the intermediated 
data and only supports the reader implemented with RP 
protocol [12]. STREAM [13] is another continuous queries 
architecture which focuses on developing execution engine, 
with emphasis on incremental evaluation methods and adaptive 
processing on scheduling and approximate answers. However it 
does not address queries optimization. 

Traditional relational queries optimization schemes were 
originally proposed in [14, 15]. Basically, they concentrate on 
extracting common sub-expressions from among multiple 
queries to share intermediate query results. In our approach, we 
analyze the query execution patterns to form clusters of 
continuous queries in which common query conditions can be 
extract and get the efficient query execution plan. 

III. APPLICATION LEVEL EVENTS 
In RFID systems, readers read tags for a very large volume 

of streaming data; however, the raw data generated is of a low 
level and is not good to directly used for applications. These 
applications require answers to specific questions from the 
streaming data. So, there need a level of processing that 
reduces the volume of data that comes directly from readers 
into coarser “event” of interest to applications. This led 
EPCglobal to develop the Application Level Events (ALE) 
Specification which is the de facto standard interface for 
filtering, grouping, counting RFID streaming data and 
reporting to applications in various forms. 

Through the ALE interface, applications may define and 
manage event cycle specifications (ECSpecs). This interaction 
may take place in a “pull” mode, where users provide the 
ECSpec and the ALE in turn initiates or waits for read events, 
processes the data, and returns the report. In this case, ECSpec 
can be considered as one time queries. On the other hand, it 
may also be done in a “push” mode, where the client registers a 
subscription to a defined ECSpec, and thereafter the ALE 
asynchronously sends reports to the applications when event 
cycles complete. In this case, ECSpec can be considered as a 
continuous query. Fig. 1 shows the operation description of 
ALE. After an ECSpec defined by users, it can be subscribed 
and continuous executed. When the ALE server receives users’ 
subscriptions, it first analyzes the ECSpec, and then starts to 
receive EPC data from data sources. This data is collected in 
every reader cycle, filtered by filter conditions and organized in 
groups in every event cycle. Finally, reports will be generated 
and sent to users. 

 

Figure 1.  The operation description of ALE 

An ECSpec describes an event cycle and one or more 
reports that are to be generated from it. It contains three main 
parts which are a list of logical readers whose data are to be 
included in the event cycle, a specification of how the 
boundaries of event cycles are to be determined, and a list of 
specifications each of which describes a report to be generated 
from this event cycle (refer to Fig. 2). An ECBoundarySpec 
specifies how the beginning and end of event cycles are to be 
determined; it controls that how to execute the ECSpec. In 
order to get the results from infinite RFID data streams, 
ECBoundarySpec defines time windows in which data is 
processed and results are generated at the end of each window. 
Time windows can be determined by start and stop conditions. 



The condition of logical readers represent that the data stream 
generated from which reader should be processed. Each 
ECReportSpec contains an ECFilterSpec which represents 
what tags are to be included in the report.  

 

Figure 2.  ECSpec 

ALE can support a lot of user clients and connect many 
heterogeneous readers, so it may receive large volume of 
streaming data generated by readers and many ECSpecs 
defined by users. These ECSpecs continuously are executed in 
ALE that may cause the response delay or reduce the 
performance of ALE system. So queries optimization is a very 
important method for continuous queries processing to 
alleviate the system burden and get results in time. As we know, 
if queries having the same operator may share intermediate 
result when they are executed at close instants. For example, in 
Fig. 1, the execution time of client 1 event cycle 1 is close to 
client 2 event cycle 1, and the window range referred by client 
1 event cycle overlaps the range of client 2 event cycle 1. 
However, client 3 event cycle 3 is separated from other’s. And 
if having some common operators, the intermediate results 
generated within client 1 event cycle 1 contains the same 
results generated within client 2 event cycle 2 as their 
execution time intervals overlap with each other. Therefore, the 
results of client 1 can be shared with client 2. The more 
intermediate results can be shared, the more system load can be 
saved. Thus, intermediate results can be shared or not definitely 
affect the effectiveness of multiple continuous queries 
optimization. Our proposed method of continuous queries 
optimization is represented in the next section. 

IV. CONTINOUS QUERIES OPTIMIZATION 
As described above, continuous queries having some 

common operators can share their intermediate results in case 
of their have close execution time. In this section, we analyze 
execution patterns of ECSpec and define similarity to form 
clusters whose members have close execution times and large 
overlaps of time intervals; and then extract common filter 
conditions for each cluster and decide the optimal query 
execution plan. 

A. Query Execution Pattern Analysis 
In order to get the queries that have close execution times, 

we need analyze query execution patterns. As mentioned in 
Section 3, ECBoundarySpec (Fig. 3) specifies the execution 
conditions of the ECSpec. The startTrigger and stopTrigger 
define triggers that may start a new event cycle or stop an event 

cycle, respectively. The repeatPeriod parameter specifies an 
interval of time for starting a new event cycle, relative to the 
start of the previous event cycle. The duration parameter 
specifies an interval of time for stopping an event cycle, 
relative to the start of the event cycle. The last two parameters 
specify stopping an event cycle. These two parameters are not 
considered in this paper since they are rarely used. According 
to ALE specification, a ECTrigger takes one main following 
form: urn:epcglobal:ale:trigger:rtc:period.offset. A trigger of 
this form means that it is delivered each time the number of 
milliseconds past midnight modulo period equals offset. The 
period defines a time period, in milliseconds between 
consecutive triggers occurring within one day within the range 
1≤period≤86400000. The offset defines a time interval in 
milliseconds between midnight and the first trigger and the first 
trigger delivered after midnight, and it must less than the 
specified period. For example, the following trigger denotes a 
trigger that occurs every hour on the hour: 
urn:epcglobal:ale:trigger:rtc:3600000.0, that means it 
continuously occurs at 0:00, 01:00, 02:00, etc. 

 

Figure 3.  ECBoundarySpec 

An event cycle begins when the first start condition (repeat 
period or one of the start triggers) occurs. If no start triggers are 
specified, the first event cycle begins immediately after client’s 
subscription of the ECSpec. The start conditions have no affect 
on an event cycle which is in progress. The event cycle 
terminates only when one of the stopping conditions (duration 
or one of the stop triggers) specified above becomes true. Thus, 
ECBoundarySpec must contain at least one stop condition. An 
execution example of event cycle is shown in Fig. 4. 
RepeatPeriod and duration are specified in the 
ECBoundarySpec, the first event cycle begins immediately 
after client’s subscription arrived and terminates when the 
duration expires. Then, another event cycle begins when the 
repeatPeriod has expired. The ECSpec is continuously 
executed in this way until client unsubscribes it. 

 

Figure 4.  An execution example 



B. Query Model Analysis 
ALE specifies ECSpec as a standard query for RFID 

middleware which contains several filter predicates related to 
tags and readers. LogicalReaders is one of them which contain 
at least one logical reader name. Each logical reader contains 
one or more physical reader names and defines filter condition 
for readers. Another important predicates is ECFilterSpec 
which specifes what tags are to be included in the final report. 
It contains a set of filter list members. Each filter list member 
consists of three parameters: includeExclude, fieldSpec, and 
patList (refer to Fig. 5).  

 

Figure 5.  ECFilterListMember 

The fieldspec specifies which field of the tag is considered 
to evaluate this filter, and the format for patterns in the patList. 
The field usually specifies epc field that contains EPC codes. 
The value of the includeExclude is INCLUDE or EXCLUDE. 
If the value is INCLUDE, a tag is considered to pass the filter 
if the value of the field matches at least one pattern specified in 
the patList. If EXCLUDE, a tag is considered to pass the filter 
if the value of the field doesn’t matches all the patterns 
specified in the patList.  

The patList specifies the patterns to compare with the 
specified tag field. There are four types of valid patterns: 
fixValue, *, [lo-hi], and &mask=value.If a pattern is a single 
value (fixValue), the pattern matches a value equal to the 
pattern. If a pattern is the *, the pattern matches any value. If a 
pattern is in the form [lo-hi], the pattern matches any value 
between lo and hi, inclusive. If a pattern is in the form 
&mask=value, the pattern matches any value that is equal 
value after being bitwise and-ed with mask. The two patterns * 
and [lo-hi] specify a range of data matching them. If one 
pattern covers fully or partially some space of another pattern, 
the overlapped part can be extracted and shared by these 
patterns. For example, p1=[3-10] and p2=[6-15] are 
overlapped, and [6-10] is the common pattern of them.  

C. Cluster Queries 
According to the analysis above, we know that the start 

conditions and stop conditions specify execution time intervals 
of the query. So, once a query defined, we can get continuous 
time intervals from it. Thus, according to these time intervals, 
we can know which queries may share their intermediate 
results if they have close executing time instances and 
overlapped time intervals. In the following part, we introduce 
how to detect queries that have large overlapped time intervals.  

After some ECSpecs defined, we can get a set of execution 
time intervals of each ECSpec. Since we do not know when 
queries will be unsubscribed and in order to easily get the 
execution time intervals, we suppose the queries cannot be 
unsubscribed before the midnight since they begin executing. 

In this case, we can extract the execution time intervals of each 
query within a certain time span T which from the start time of 
query to the midnight. After we get the set of execution time 
intervals, we can detect which queries have overlaps of 
execution time intervals. To achieve this, we cluster queries so 
that queries in the same cluster have large overlaps of interval 
which maybe share their intermediate results. In order to 
cluster the queries, the similarity of queries is needed to define. 
We define the unit-length interval on one day’s time and label 
them sequentially. The length of unit-length interval is not 
fixed and changeable. For example, we can set it as 10 minutes, 
30 minutes, 1hours, etc. Now, for each query Qi, we can get a 
set of Ti whose elements are sequence numbers of unit-length 
intervals. Ti can be computed as follows: 

                          { }UItetT
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Where ETi is the set of execution time interval of query Qi, 
UI is the labeling number set of unit-length intervals. 

Then the similarity (Qi, Qj) can be computed as follows: 
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The similarity of queries measures how much overlap exists 
between two queries. If the similarity equals to 0, it means 
these two queries have no overlaps of time intervals. If the 
similarity equals to 1, it means these two queries have the same 
execution time intervals. In order to form clusters, we need 
compute similarity of all queries. 

Using the similarity of all queries, we can form cluster that 
have the high similarities. To generate the clusters, we use a 
hierarchical clustering algorithm, where queries in the same 
cluster have similarity more than or equal to a predefined 
threshold θ  ( 10 ≤≤ θ ). The size of the generated clusters is 
decided by the threshold which is also the criterion for deciding 
how many overlaps of execution time intervals the queries 
have. If θ  equals to 0, it means all the queries form only one 
cluster. If θ  equals to 1, it means only queries having same 
time intervals form a cluster.  

 

Figure 6.  Queries execution time intervals 

For an example, there are three queries, and their execution 
time intervals are shown in Fig. 6. We set the unit-length 
interval to 1 hour and label them from 1 to 24. So, we can 
compute time interval set of each query as follow:  

T1 = {3, 4, 5, 6, 11, 12, 13, 14, 19, 20, 21, 22} 

T2 = {4, 5, 6, 12, 13, 14, 20, 21, 22} 



T3 = {6, 7, 8, 9, 10, 11, 16, 17, 18, 19, 20, 21} 

Using Ti, we can compute the similarities of each query:  
similarity(Q1, Q2) = 0.75, similarity(Q1, Q3) = 0.22, 
similarity(Q2, Q3) = 0.17.  If the threshold θ  set to 0.6, we can 
get two clusters: Q1 and Q2 belong to a cluster, Q3 belongs to 
another cluster. 

After clusters formed, they need to update since during 
system running queries insertion and deletion may occur. In 
this case, we need to reconstruct clusters to maintain the best 
similarity. However, this process is too expensive. To provide 
high performance, we reconstruct clusters only when the 
number of queries changes more than a predefined constant 
value. For insertion, a new coming query is added to the cluster 
having the query with highest similarity. For deletion, just 
remove query from the cluster. 

D. Query Optimization 
As previous description, queries in the same cluster have 

high similarities. So they can share some intermediate results 
generated by common query filtering conditions. Therefore, we 
need find out common query conditions and generate optimal 
query plan for each cluster. To get the common conditions of 
queries in the cluster, we refer to the algorithm proposed in [11] 
to get common query conditions. We use its algorithms to split 
and merge query filter conditions to find the common 
conditions for queries in each cluster. Using these common 
conditions, optimal query plan can be derived. We choose the 
optimal query plan that can share common filter conditions as 
more as possible. For example, there are there queries Q1, Q2, 
and Q3 in the same cluster shown in table 1. 

TABLE I.  EXAMPLE OF QUERIES 

Query Reader Specification Filter Condition 

Q1 R2 1PatList1 = <[10-15]> 

Q2 R1 2PatList1 = <[10-13]> 

Q3 R1 3PatList1 = <[6-14]> 
 

 

Figure 7.  Query execution plans 

Here we suppose all the patterns are EXCLUDE. Fig. 7 
shows one possible execution plan for three queries. According 
to the filter conditions, we know they have overlapped 
conditions. So we split the patterns and find the overlapped 
pattern. The patterns can be split as follows: 

1PatList2 = <[10-13]>, 1PatList3 = <15> 

 2PatList1 = <[10-13]> 

 3PatList2 = <[6-9]>, 3PatList3 = <[10-13]> 

 3PatList4 = <14> 

 From split patterns, we know filter condition <[10-13]> is 
the common condition of the three queries. So, we can change 
the query plan by using new patterns. Fig. 8 shows the new 
query execution plan for three queries. Comparing these two 
execution plans, the second one is better than the previous 
query execution plans shown in Fig. 7. Since there are two 
query conditions are shared in the optimal execution plan. In 
this case, it can reduce duplicated data and save processing 
time. So, our query optimization method can share query 
operators, reduce redundant result, save response time, and 
enhance performance of ALE middleware. 

 

Figure 8.  An optimal execution plan 

V. CONCLUSIONS 
RFID middleware systems process high volume of raw 

RFID streaming data to reply the requests of applications. To 
process RFID data, EPCglobal has specified a de facto standard 
query interface for RFID middleware. In this paper, we 
proposed an optimization approach to execute continuous 
queries for RFID middleware. In our approach, it first 
computes similarities of queries based on queries execution 
time intervals; then forms query clusters having high 
similarities; at last for each cluster, finds the common filter 
conditions and generates optimal query plans for each cluster. 
The optimal query plan has the most common query conditions 
to share intermediate results. So our approach can well used for 
ALE to process RFID streaming data.  
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