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ABSTRACT

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment
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Faculty: Institute of Advanced Technology

Bayesian networks have been successfully implemented in many research and indus-

trial areas. Nevertheless, they have not been thoroughly investigated and implemented

such as Neural networks for damage detection in engineering materials. This thesis is

dedicated to introduce the Bayesian network as a competitive probabilistic graphical

model in general and as a classification tool (the Naı̈ve bayes classifier) in particular for

damage detection in engineering materials. The Bayesian networks in the thesis have

been mostly introduced with the axioms of the damage detection. This is to let the

thesis be considered as a reference too for the community of the damage detection and

be self-contained. Bayesian networks have two-sided strengths: It is easy for humans

to construct and to understand them, and when communicated to a computer, they can

easily be compiled. The attractive aspect of the Bayesian networks is that there is a
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rational way to build the network based on the causal relationship, informational, and

mediating variables. Conversely, the Neural networks are forcing to guess the appro-

priate structure of the network. The states of the variables in the Bayesian networks

can be calculated directly or indirectly through other variables. Thus, changes in a sys-

tem model should only induce local changes in a Bayesian network, where as system

changes might require the design and training of an entirely new Neural network.

The size of the network structures plays a vital role in their accuracies, when used as

classifiers. The feature reduction (selection and extraction) represents a very impor-

tant step in decreasing the sizes of the networks. The state-of-the-art shows that most

of the reduction techniques, if not all, that have been implemented for damage detec-

tion in engineering materials were devoted for specific types of engineering materials

and nondestructive techniques. They have been borrowed and implemented from other

fields; no any one found to be proposed based on the waves used for damage detection.

In addition, most of the implemented techniques are feature selection not extraction.

Feature selection is less flexible than feature extraction in that feature selection is, in

fact, a special case of feature extraction (with a coefficient of one for each selected

feature and a coefficient of zero for any of the other features). This explains why an

optimal feature set obtained by feature selection may or may not yield a good clas-

sification results. The feature selection is problematic, when there is a large number

of potential features for classification and the best method to use depends on the cir-

cumstances. Therefore, it is important to propose a feature extraction algorithm for the

damage detection.

The methodology used in the thesis provides a preliminary analysis used in proposing a

new feature extraction algorithm (f -FFE: thef -folds feature extraction algorithm) as a

general algorithm for all engineering materials and nondestructive testing techniques.

The proposed algorithm divides the data into folders, forms new sets of data from

these folders, clusters these sets using a clustering algorithm (e.g.k-means algorithm),
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then extracts the mean, maximum, and minimum values of the clusters to represent the

extracted features.

The methodology is developed using two data sets. the first set represents voltage am-

plitudes of Lamb-waves produced and collected by sensors and actuators mounted on

the surface of laminates contain different artificial damages. The laminates composed

of 25 cm× 5 cmrectangular[90/ ± 45/0]s quasi-isotropic laminates of the AS4/3501-

6 graphite/epoxy system. Various types of damages were introduced to the specimens

including, holes, fiber fracture, matrix cracking, and delamination. Lamb waves were

propagated to the specimens by using15 and50 KHzfrequencies. The second set is

a vibration data from a type of ball bearing operating under different five fault condi-

tions. The ball bearing is of the type6204with a steel cage. The raw measurement data

took the form of an acceleration signal recorded on the outer casing for the bearing in

five states. The two sets are complete data without any missing values.

The derivation of thef -FFE algorithm is based on an empirical study carried out in

the first data set. The empirical study has been shown as graphs of clusters, which

formed from the data set after dividing it into folders. To verify the algorithm, the

algorithm run on the second data set using the Naı̈ve bayes classifier, which has been

implemented on the Weka tool. Weka is an open source code data mining tool. Two

software programs have been written in Java programming language so as to imple-

ment the parts of the proposed algorithm that were not covered by the Weka. The

proposed algorithm implemented on the second set of the data.

The features extracted by thef -FFE algorithm were tested with different number of

folders and clusters. The features contain four groups: the first group represents all

features, the maximum, mean, and minimum, the second group represents the com-

bination of mean and maximum, the third group represents the mean, and the fourth

group represents the maximum values of the clusters. It has been assumed that the

maximum values in the clusters represent the peaks of the amplitudes of the waves
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collected by a nondestructive testing method. The best results obtained when the num-

ber of clusters is four, the number of folders is six, and the combination of mean and

maximum values has been used. The highest accuracy of the classifier obtained ex-

ceeds95%. It has been shown that the maximum values only (the peaks) have shown

the worst classification results in comparison to other cases and the mean values have

show good results, which can be compared to the combination of the maximum and

mean values. The number of the extracted features is highly decreased to48, while the

original data contain2048amplitudes. Simultaneously, it increased the classification

accuracy to more than95%. Thek-fold cross validation was used as a model evalua-

tion method. This method divides the data set intok subsets, and the holdout method

is repeatedk times. Each time, one of thek subsets is used as the test set and the other

k - 1 subsets are put together to form a training set. Then the average classification

accuracy across allk trials is computed.

The studies conducted in this research have shown the Bayesian networks as one of the

most successful machine learning classifiers for the damage detection in general and

the Näıve bayes classifier in particular. The studies have shown also the effectiveness

and efficiency of the proposed algorithm in reducing the number of the input features

while increasing the accuracy of the classifier.
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ABSTRAK

The translation will be done after the full correction and approval of the thesis by the

supervisor and committee members.
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CHAPTER 1

BACKGROUND

1.1 Introduction

Recently, there has been a tremendous growth in the usage of engineering materials

(EMs) in all types of engineering structures (e.g. aerospace, automotive, and sports).

EMs are used to create a diversity of products, from computer chips and television

screens to golf clubs and snow skis.EMs include metals, plastics, semiconductors,

steel, aluminum sandwich honeycombs (ASH), and composite materials (CMs). CMs,

ASH, and steel find wide usage in automobile and airplane parts on account of their

stiffness and strength. Figure1.1 shows a superA380 airbus plane, which the mate-

rials used in its construction are particularly innovative. About25% of the A380 is

made up of composites,22% carbon fibre reinforced plastics (six times stronger and

up to60%lighter than steel) and3% glare. Glare is a laminate of alternating layers of

aluminum and glass fibre reinforced plastic, that is being used in civilian aircraft for

the first time. Glare is not only lighter than aluminium, but is also more fire proof and

has higher fatigue strength. It also reduces the weight of theA380by 800kg [1].

CMsare fabricated by combining two materials in which one of the materials, called

the reinforcing material and the other called the matrix material. The reinforcing ma-

terial is in form of fibers, sheets, or particles, which is embedded in the reinforced

materials. The reinforcing and matrix materials can be metal, ceramic, or polymer.
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Figure 1.1:A superA380airbus plane constructed from innovative materials [1]

CMsare designed to combine the strength of the reinforcement with the toughness of

the matrix to achieve a combination of desirable properties that can not be guaran-

teed by the constituents when used separately. Examples of some application ofCMs

are the diesel piston, brake-shoes and pads, tires and the Beech-craft aircraft in which

100%of the structural components are composites [2].

Within the aerospace and marine industries the advantages ofCMscan be summarized

as:

• Weight saving, which can be illustrated in the strength to weight ratio.

• Stronger and stiffer than metals on density basis.

• Highly corrosion resistant, especially in the most corrosive environments.

• Can be folded into many complex shapes during fabrication.

• Complicate the detection of ships and submarine in water using acoustic emis-

sion. They reduce transmitted mechanical noise from a vessel to the surrounding

water.

CMs can be classified in many different ways, e.g. they can be classified based on

the nature of the constituent materials. A more traditional classification than this one
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is derived from their forms. Figure1.2 shows examples ofCMswith different forms.

The last form ofCMs is so-called laminated composite materials (LCMs). LCMsare

fabricated by bonding thin plates or plies ofCMswith fibers laid in different angles [3].

(a) Bidirectional (b) Discontinuous fiber (c) Unidirectional

(d) Woven (e) laminated

Figure 1.2:Different forms of composite materials [3]

Aluminum honeycomb sandwich (AHS) structures are tremendously used in a vari-

ety of engineering applications where there is a demand for strong, lightweight struc-

tural materials. Aerospace and aircraft applications primarily use the materials elastic

properties (e.g. cores of sandwich panels) where stiffness and buckling are primary

concerns.AHSplates are omnipresent on light-weight aerospace structures, such as

trailing edges, spoilers and flaps. AnAHSplate is almost four times lighter than an

aluminum single plate with the same stiffness.AHSshave excellent properties such as

high-energy absorption, fire proof, and weight saving [4] Figure1.4 shows a top and

side view of a honeycomb specimen.

Steel is widely used for roller and ball bearings. Rolling element bearings are critical

components in rotating machinery, e.g. turbine engines and helicopter transmissions.

Their function is to connect two machine members that move relative to one another
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(a) A top view of a honeycomb specimen without face plate

(b) A side view of a honeycomb specimen with face plate

Figure 1.3:A top and side honeycomb views without and with face plates [5]

so that the frictional resistance to motion is minimal.

In practical situations, material failure or damage may occur during manufacturing

processes or in-service. The manufacturing related damages are like foreign object

inclusion, porosity, and resin rich areas. In-service damages can happen in the case of

aeronautical materials because a tool is dropped during maintenance, there is a bird or

hail strike in plain flight, perhaps runway debris striking the aircraft during takeoff or

landing. The damages have the potential of growing and leading to catastrophic loss of

human life, and decrease in economy. Examples of real-life damages can be shown as

airline crashes, space shuttle explosions, and building and bridge collapses. The early

detection and characterization ofin situdamages inEMsare very significant to ensure

their structural health and integrity, prevent them from catastrophic failures, and pro-

long their service life [7, 8].
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(a) Tapered ball bearing (b) Cylindrical ball bearing

(c) Needle ball bearing (d) Spherical ball bearing

Figure 1.4:Different types of steel ball bearings [6]

The damage process ofLCMs is quite complex, involving both intralamina damage

mechanisms (e.g. matrix cracking and fiber fracture) and interlamina damage (e.g. de-

lamination between plies and debonding between fibers and matrix). For example, in

a fiber reinforced plastic laminate, a delamination may occur between plies and prop-

agate, eventually, leading to catastrophic failure of the structure.

In today’s turbine engines and helicopter transmissions, the damage of bearing is de-

tected by the properties of the debris found in the lubrication line when damage begins

to occur. Vibration data is also used to indicate the damage of the bearing by moni-

toring the fundamental defect frequencies of the rolling element bearings such as the

fundamental cage frequency, ball pass frequencies of the inner and outer race, and the

ball spin frequency. The sensitive measurement method for early detection of the dam-
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ages in ball bearing and the diagnostic techniques for evaluating the abnormal details

are necessary [9, 10].

One of the potential solutions used for damage detection inEMs is the structural

health monitoring (SHM). The literature defines theSHM as the acquisition, valida-

tion, and analysis of technical data to facilitate the life-cycle management decisions

[11]. Kessler et al.[7] stated thatSHM denotes a reliable system with the ability to

detect and interpret adverse changes in a structure due to damage or normal operation.

The intent ofSHM system is to detect and locate damage inEMsand to provide this

information in a form easily understood by the operators systems. Aerospace struc-

tures have one of the highest payoffs forSHM applications since damage can lead to

catastrophic and expensive failures, and the vehicles involved undergo regular costly

inspections.

There are several components required to design a successful and robustSHMsystems

for damage detection. It essentially involves implementation of a nondestructive evalu-

ation (NDE) or nondestructive testing (NDT) technique (e.g. ultrasonic, eddy-current,

acoustic emission, and radiography) to a structure to acquire data for the damage de-

tection. Some of these techniques use actuators to propagate waves into the material.

The waveforms reflected by the damages and the surfaces of the material are captured

and digitized by the sensors, then will be compared to waveforms captured during the

calibration of the damage detection system. In conventionalNDT, the reflected wave

shapes are visually inspected and analyzed, which is not accurate in assessing and de-

termining the damages. The system should be able to automatically detect, locate, and

assess the damage within the structure. The need for quantitative damage detection

methods that can replace the visual inspection and be applied to complex structures

has encouraged theSHMcommunity to borrow and implement some techniques from
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machine learning (ML). The results of the waves detected by the sensors are fed into

the ML techniques to quantitatively specify the characteristics of the damages found

on the material.

1.2 Problem Statement

Bayesian network has emerged as one of the successful machine learning techniques

and a generalizing graph-based framework for creating statistical models of domains

with uncertainty. It has attracted a great deal of attention in research institutions as well

as in industry as a good modeling tool. Nevertheless, it has not been demonstrated for

damage detection in engineering materials. It is very important to demonstrate the po-

tential of Bayesian network as a modeling tool for damage detection in engineering

materials that qualify it to compete with other machine learning techniques. In ad-

dition, it is very important to show its simplicity and effectiveness to offer attractive

features that are difficult to be achieved by other techniques.

1.3 Objectives

The first objective of this thesis is to introduce the Bayesian network as a probabilistic

graphical model to the community of damage detection in engineering materials. This

can be done by introducing the Bayesian network, describing its graphical structure,

and its quantitative part in terms of damage detection factors. This will make it easier

for the community to understand the Bayeisan network concept and implement it.

The second objective of the thesis is to propose a new feature extraction method based

on the waves propagated to the materials using traditional nondestructive testing meth-

ods, e.g. ultrasonic. These features can be used as variables in the Bayesian network
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models developed for damage detection in engineering materials, which will play vital

role in increasing the accuracy of damage prediction and expand its criterion.

The third objective of the thesis is to implement the Bayesian network in general and

Näıve-bayes in particular as a classifier for damage detection in engineering materi-

als. The features extracted from the second objectives will be used as an input to the

classifier.

The technology of the Bayesian networks is a marriage between probability and graph

theory. It is mainly developed within the machine learning community. Currently, the

technology is implemented in many fields (e.g. image and voice recognition, medical

diagnostic systems, and weather forecasting) and it is available in inexpensive and free

software systems. The system seldom implemented for damage detection in engineer-

ing materials. Therefore, it is time to be implement the technology in this field. Thus

the main contribution of the thesis is a desirable technology transfer.

1.4 Scope of the Study

The concentration of the study involves the introduction of the Bayesian networks to

the damage detection community in engineering materials. The Bayesian network is

introduced in the axioms of the damage detection. Since the classification is the main

issue in the damage detection, the Bayesian networks is introduced as a classifier, in

particular the Näıve bayes classifier. A feature extraction algorithm is proposed and

tested to reduce the dimensionality of the data by decreasing the number of features

and to improve the classification accuracy. The limitation of the time and scarcity of

data related to the damage detection forced the research to be limited only to two sets

of data. The first set of data used were25 cm× 5 cmrectangular[90/ ± 45/0]s quasi-

isotropic laminates of the AS4/3501-6 graphite/epoxy system. Various types of dam-

ages were introduced to the specimens including, holes, fiber fracture, matrix cracking,
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and delamination. The thesis limits the damages to their types only and does not in-

clude damage locations, sizes, etc. Lamb waves were propagated to the specimens by

using15 and50 KHz frequencies. The second set of the data considered to test the

Nı̈ave bayes classifier were vibration data from a type of ball bearing operating under

different fault conditions. The raw measurement data took the form of an acceleration

signal recorded on the outer casing for five bearing states.

1.5 Significance of the Study

The early detection and characterization ofin situ damages in engineering materials

are very significant to ensure their structural health and integrity, prevent them from

catastrophic failures, and prolong their service life. The damages have the potential of

growing and leading to catastrophic loss of human life, and decrease in economy. Ex-

amples of real-life catastrophic accidents happened as a result of damages in engineer-

ing materials can be shown as airline crashes, space shuttle explosions, and building

and bridge collapses.

There are many artificial intelligence techniques (e.g. neural networks and genetic pro-

gramming) that have been implemented for damage detection in engineering materials.

Nevertheless, the implementation of these techniques is very preliminary, limited, and

does not lend itself for complex damage detection, for example, the characterization of

damage types (e.g. delamination, crack, and hole in laminated composite materials).

This may be due to the complex nature of the used techniques. Recently, Bayesian net-

work is a probabilistic graphical model that has evolved as one of the most successful

machine learning techniques, which has been successfully implemented in many areas.

Nonetheless, it is seldom introduced for damage detection in engineering materials.

The primary goal of implementing these techniques is to be able to replace current

inspection cycles with a continuously monitoring system. This would reduce the

downtime of the vehicle, and increase the probability of damage detection prior to
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catastrophic failure. Several of artificial intelligent techniques have been implemented

and tested successfully, however much work remains before these systems can be im-

plemented reliably in an operational vehicle. The present research attempts to fill some

of the gaps remaining in using these techniques.

1.6 Thesis Organization

The ultimate goal in carrying out this thesis is to introduce Bayesian networks as a

classifier to the community of damage detection in engineering materials. The steps

taken on the way to this are:

Chapter2 shows the literature review. Most of the reviews are based on the works

that used Neural networks as modeling techniques and natural frequency, electrical

conductivity, and lamb waves as nondestructive techniques. Brief summaries of these

works together with some critics are shown.

Chapter3 presents the theory upon which the thesis is based on so as to make it as

self-contained as possible. The first part of Chapter three provides an overview of

the practical issues that need to be considered for the implementation and usage of

structural health monitoring systems. The issues are discussed in detail with the help

of an example, piezoelectric based structural health monitoring system. Issues and

solutions for integration of sensors and sensors networks have been presented along

with some examples. Finally, the intelligent signal processing has been shown as a

key element, which builds the bridge between the sensor signal and the structural in-

tegrity interpretation. The second part of this chapter shows the Bayesian networks. It

shows the theory behind the networks, different types of Bayesian network classifiers

in particular the Näıve bayes classifier, and learning the Bayesian networks.

Chapter4 illustrates the steps of the methodology used in the thesis. The steps include

collecting data, discussion of a proposed feature extraction algorithm ( f -FFE: f-folds
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feature extraction), selecting a suitable tool for the classifier, and implementing and

evaluating the extracted features in the classifier. A preliminary study has been shown,

which specifies the base upon which the algorithm has been developed.

Chapter5 is intended to demonstrate the implementation of Naı̈ve bayes classifier

for damage detection in engineering materials using the features extracted by thef -

FFE algorithm. The algorithm extracted features from a set of vibration data from a

type of ball-bearing data operating under different fault conditions. The Naı̈ve bayes

classifier used in this study was implemented in the open-source machine learning

package Weka. Two java programs have been described which implement some part

of the algorithm that were not implemented in Weka.

Chapter6 evaluates the results of Naı̈ve bayes classifier and thef -FFE algorithm, when

implemented using different number of folders and clusters. The first purpose of the

evaluation is to compare the classification accuracies based on folders for all number

of clusters considered in this thesis and to specify the number of clusters that give

the best results. The second purpose of the evaluation is to compare the classification

accuracies based on clusters for all number of folders considered and to specify the

number of folders that give the best classification accuracies. The third purpose is to

determine the features that give the best results.

Chapter7 shows an overall conclusion of the thesis as well as some future recommen-

dations.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Traditional NDT techniques had been widely implemented for damage detection in

EMs as qualitative diagnostic systems to assess the health and integrity of materi-

als. As mentioned in Section1.1, severalNDT techniques (e.g. ultrasonic inspection,

eddy current testing,X-radiography and acoustic emission testing) were developed

and successfully implemented for a variety of applications. However, traditionalNDT

methods were not able to satisfy the increasing demands of continuous assessment of

materials health and integrity while in service. Recently, there has been a tremendous

growth and advancement in the technology of sensors and machine learning techniques

(e.g.NN, Fuzzy logic, and Genetic algorithms), which can be implemented for damage

detection.NNswere widely implemented for damage detection in engineering materi-

als using differentNDT techniques. Therefore, most of the review done in this thesis

are based on the works that usedNNsas modeling techniques and natural frequency,

electrical conductivity, and lamb waves asNDT techniques.

Lamb wave (LW) methods have re-emerged as one of the most reliable techniques that

are capable of propagating relatively long distances in someEM plates (e.g.LCMs)

[14, 15]. Alternatively, electric conductivity is also widely implemented for the same

purposes. This method has a long history in geology and biomedical applications in
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which an electric current is applied and the electric potential is recorded at monitoring

electrodes around the area of study. The successfulNDT techniques for small labo-

ratory specimens, such as radiographic detection andC-scanning, are impractical for

large components. Natural frequency methods are simple to implement on structure of

any size. Structures can be excited by external shakers or embedded actuators, and em-

bedded strain gauges or accelerometers can be used to monitor the structural dynamic

responses [16].

2.2 Natural Frequencies

The presence of damage in someEMs (e.g. LCMs) causes changes in the physical

properties of the material, which does not affect the mass distribution but reduces the

stiffness of the structure and leads to changes in modal parameters (notably frequen-

cies, mode shapes, and modal damping factors). It has also been shown that natural

frequencies are sensitive to the size, location, and shape of the damage such as delam-

inations in structural components [17–20]. Therefore, natural frequencies can be used

as indicative parameters of internal damages. Modal analysis may be used to quan-

tify internal defects through shifts in the natural frequencies of a structure [17, 21–23].

NN simulations can accurately and robustly respond to dynamic characteristics ofEMs

structures and they can be used to predict the damages ofEMs. TheNN uses natural

frequencies as input and the corresponding damage information (location, size, and

shape) as an output to the network [24–27].

Smart instrumentation has been extensively tested to specify damages inEMs using

permanent sensors as monitoring or field evaluation systems. Fiber optic sensors are

attractive candidates for smart composite applications. They may also be incorporated

into a composite element since their temperature tolerances and small sizes are com-

patible with composite processing and structure. Optical sensor data is commonly
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processed withNNs [28]. Watkin et al. [29] usedBP NN and fiber optic vibration

sensors to predict different sizes and locations of delaminations in composite beams.

The fiber optic sensors measured the first five modal frequencies for healthy (undelam-

inated) and delaminated cantilever beams made of eight-ply glass/epoxy composite

laminates. The delamination size and location prediction resulting from the network

simulation had an average error of5.9%and4.7% respectively. Table2.1 shows the

experimental sizes, the predicted sizes, and the percentage differences between them.

The results might be improved by using training data from more accurate analysis.

Further studies are needed so as to obtain an efficient health monitoring capability in

composite structures with integral fiber optic sensors andNN. The fiber optic outputs

may also be fed directly into aNN to provide accurate information for complex struc-

tures.

Table 2.1:The prediction accuracy of delamination sizes usingNN [29].
True Sizes NN Sizes Differences

(cm) (cm) (%)
1.27 1.29 1.2
2.54 2.81 10.6
3.81 4.22 10.7
5.08 5.40 6.3
6.35 6.41 0.9

Chakraborty [12] introduces an approach that predicts the presence of embedded de-

lamination (in terms of location, shape, and size) in fiber reinforced plastic composite

laminates by usingBP NN with 3 layers (input, hidden, and output). The network

has been tested to predict the presence of delamination along with its size, shape, and

location. It has been observed that the network can learn effectively the size, shape,

and location of a delamination embedded in the laminate and can predict reasonably

well when tested with unknown data set. Simulated data has been used for training and

testing the network, but the approach has not been tested by using real life data sets so

as to specify its actual efficiency.

Crispin and Gerard [30] proposed an approach that combines a simple but sensitive op-
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tical fiber vibration sensor, a fast Fourier transformation (FFT) pre-processing stage,

andBP multi-layer perceptronNNsto detect damage in carbon-fiber reinforced poly-

mers (CFRP). In this study twoNNswere used, which were receiving data from four

sensors fixed in the composite plates and using these information to specify the loca-

tion of the damages on the plates. One network was responsible for specifying the

location of the damages from theFFTsof strain and the second one for finding their

magnitudes. The system detected the damages with an average error of7.08%, when

data sets with simulated damages were used. In the later work, the composite panel

was fitted with a number of ribs and stringers to simulate a real load-bearingCFRP

skin structure. This made the task of loading impacts harder but a92% success was

achieved. The system was trained successfully to differentiate between test transient

signals fromCRFPplates with four levels of damages and with three degrees of simu-

lated impact damage.

Lew [31] introduced a novel study of optimal controller design for structural damage

detection. The study was based on a neural network approach that uses the correlation

of the identified natural frequency change of open-loop and closed-loop systems. In

the optimal control designs, passive controllers and low-order controllers are used. The

results show that the use of optimal controllers can significantly enhance the correla-

tion difference between the damaged element and the undamaged element. This can

dramatically improve the performance of damage detection. The example of low-order

controllers demonstrates that the controller can be designed for both the performance

of structural damage detection and also the specified damping performance. The per-

formance of damage detection is very sensitive to sensor/actuator location.

Sahin and Shenoi [32] presented an experimentally validated damage detection algo-

rithm using features extracted from vibration-based analysis data as input forNNs, for

location and severity prediction of damage in beam-like structures was presented. In

this work, different damage scenarios have been created by reducing the local thick-
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ness of the selected elements at different locations, and simulated vibration responses

have been introduced toNNswith and without artificial noise during training. Sensitiv-

ity analysis has also been performed on extracted features by using different vibration

modes considering the effect of damage location and severity before introducing them

to NNs.

Yan et al. [33] had evaluated the ability of detecting crack damage in a honeycomb

sandwich plate using natural frequency and dynamic response, and the feasibility of

detecting small crack using method proposed. It has been found that using structural

natural frequency may not be suitable for detecting crack damage less than10%, even

up to 20% of the total size of a plate-like structure. Besides, it is very difficult to

determine the location and category of crack damage with such a dimension. How-

ever, energy spectrum of wavelet transform signals of structural dynamic response has

higher sensitivity to crack damage, it can exhibit structural damage status for a crack

length close to2% of the dimension of a plate-like structure. It has been also found

that structural damage information is often contained in some high order modes of a

structure, and more vibration modes should be included in structural dynamic model

for detection of small damage.

2.3 Electrical Conductivity

The implementation of natural frequencies as indicative parameters for damage detec-

tion in EMshas the disadvantage that sometimes, the measurement of the frequencies

is very difficult due to some limitations like the connectivity associated with the sen-

sors (e.g. space and bandwidth restrictions) and external noises. Another approach

to identify the damages is embedding fiber-optic strains into the materials so as to

measure the strain distribution [35, 36]. Unfortunately, this may reduce the static and

fatigue strengths, and increase the total weight of the material. In addition, the optical

fiber sensors and the sensing systems are very expensive. These guide to another form
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of smart technology to identify damages inEMS.

Some of the materials used in theLCMs are electrical conductors, e.g. carbon and

graphite fibers. Therefore, the measurement of the electrical resistance appears to be a

valuable technique for the detection of different types of damages inCFRPlaminates,

which does not cause reduction of static strength or fatigue strength. Moreover, the

electric-potential method does not cause increase in weight. This method has been

adopted by many researchers, e.g. Irving and Thiagarajan [37], and Abryet al. [38].

In the case ofCFRP, the carbon fibers are not only used as a reinforcement material,

but also as sensors of damage detection [39]. Dae-Cheol and Jung-Ju [39] investigated

this kind of damage detection by mounting electrodes on the surface of theCFRP

structures. They showed that the measured stiffness change had a similar trend as

the electrical resistance change during fatigue tests. The electrical resistance showed

gradual increase while the stiffness was decreasing and showed an unexpected change

when the final fatigue stiffness changed suddenly. They usedNN to investigate the

relation between the electrical resistance damage parameter, fatigue life, and stiffness

reduction, which showed good relationship (Figure2.1).

Figure 2.1:Comparison of fatigue life and resistance damage parameter [39].

Figure2.1 shows the relationship between electrical resistance and fatigue life using

NN. The input node of theNN was the electrical resistance damage parameter and the

output node was the fatigue life of stiffness reduction. Three stress levels, 70%, 60%,
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and 50% of the average static ultimate strength were selected. The error convergence

of the network relies on the structure of the hidden layer. In this case, it showed better

results with two hidden layers than with one hidden layer. About11 to 18 numbers of

experimental data were used as learning input data. After the learning step, a graph

very similar to the experimental results was acquired. Thus, it was possible to predict

specimen damage by monitoring electrical resistance usingNNs.

Graphite fibers in graphite/expoxy laminated composites are also very good electric

conductors and the epoxy matrix is an insulator. Generally, electric conductivity is

very high in the direction of the fibers and much lower in the transverse direction of

the fibers or may vanish under normal conditions [40]. When a delamination grows

between plies in a graphite/expoxy composite, the electrical resistance increases in the

composite. Therefore, delaminations can be detected by calculating the variation of

electric resistance in this kind of composites. Todoroki andet al. [41–44] showed

that electrical resistance change method using response surfaces was very effective in

identifying delaminations in laminated composite materials both experimentally and

analytically. They proposed a schematic representation of a delamination monitoring

system (Figure2.2).

Figure 2.2:Delamination identification using electric resistance [41].

In Figure2.2, multiple electrodes were mounted on the surface of a specimen with

equal spaces from each other. All of these electrodes were placed on a single side of

a specimen. Usually it is impossible to place electrodes and lead wires outside of the
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aircraft structures. Mounting of electrodes on the singe side surface represents model-

ing of electrode attachment in thin aircraft shell type structures. Electrical resistance

change of each segment between electrodes was measured for various cases of location

and size of delaminations. Using the measured data, the relationships between electri-

cal resistance changes and delaminations (location and length) were obtained using the

response surfaces. The response surface methodology comprises regression curve fit-

ting to obtain approximate responses, design of experiments to obtain minimum vari-

ances of responses, and optimizations using approximated responses [43, 44]. The

main draw back identified for this method was the high number of experiments that

must be performed to obtain sufficient number of sets of electrical resistance changes.

The response surface was similar toNNsand it was a widely adopted tool for quality

engineering fields.

2.4 Lamb Waves

Sir Horace Lamb was the first to introduce the Lamb wave (LW) in 1917. LW is one

of the widely used techniques inNDT for damage detection inEMs. LWsare acoustic

waves that can be launched into relatively thin solid plate with free parallel surfaces

and are also known as plate waves [46]. There are different kinds of techniques used

to propagate and receiveLWs. These techniques have been implemented in a variety

of configurations, including the use of single purpose devices (e.g. transducers) that

use separate actuators (sources or transmitters) and sensors (receivers) to propagate

and monitor the propagated waves and/or reflected waves individually, and multipur-

pose transducers in which, a single transducer is used to actuate and sense the waves

simultaneously. The simplest methods of the multipurpose transducers use piezoelec-

tric transducers. The single purpose transducers are like laser transmitters and optical

fiber sensors. Each of these techniques has its own unique properties and different

analytical complexity in detecting and predicting specific types of damages inEMs.
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The LWsgenerated by a transmitter propagate through the material and reflected by

damages and the surfaces of the material back to the sensors. The signals reflected

to the sensors contain some information (e.g. size, location, and orientation) about the

damages and they can be used to test the structural integrity of the material.LWsexcite

the whole volume of the structure along the line between the transmitter and receiver.

They can propagate over long distances. However, their dispersive nature and the exis-

tence of many modes simultaneously can complicate the interpretation of the acquired

signal [46].

Worlton was the first to introduce the implementation ofLWsfor damage detection in

1960. He investigated the dispersion curves of aluminum and zirconium to describe an-

alytically the characteristics of the various modes that would pertain to nondestructive

testing applications. During the late1980and1990s, work began on the application of

LW to composite materials [49].

A sensor using metallic multi-electrodes deposited on a piezoelectric substrate has

been especially designed and developed bye Rguitiet al. [47] in order to detect Lamb

waves generated byPZT transducers in aluminum plates. The process used for this

device fabrication is the tape casting technique, which is adapted to manufacture large

and thin piezoelectric sheets. The resonance method was used to characterize thePZT

material. This study demonstrated some significant improvements when using this sen-

sor compared to the multi-element array [48]. First of all, the integration of this sensor

becomes easier, since only one component has been realized and stuck on the structure

to be monitored. Secondly, the use of only one piezoelectric substrate allows to get

an equivalent electric response on each electrode, which eases the conditioning of the

signal to be processed. Thirdly, the problem of possible conversions and reflections on

each element that can be observed when using the multi-element array is now solved.
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Finally, the sensor sensitivity to Lamb wave variations in presence of damage has been

demonstrated

Many researchers have adopted theLWstogether withNNsas a technique for damage

detection inEMs. Su and Ye [13] demonstrated aLW propagation-based quantita-

tive identification scheme for delamination inCFRPcomposite structures by using a

multi-layer BP NN. An Intelligent signal processing and pattern recognition package

was developed to perform the identification, where aBP was trained using spectro-

graphic characteristics extracted from acquiredLW signals. Excellent quantitative di-

agnosis results for damage parameters in terms of presence, location, geometry, and

orientation were achieved. Although a certain amount of time is inevitably spent on

the preliminary off-line development of theNN, the researchers did not test the devel-

opedNN and the structural health monitoring system to diagnose an actual damage

performed instantly online.

Yuanet al. [49] introduced a damage signature based on wide-bandLW for on-line de-

lamination and impact detection monitoring system applied to honeycomb sandwich

andCFRPstructures. The damage signature was introduced together with a Kohonen

NN to determine the presence and extent of damage in the composites, while dimin-

ishing the influence of different distances between the transmitters and sensors. They

showed the efficiency and the reliability of the proposed method for the different types

of the materials used, which suffer various levels of damage.

Su and L.Ye [50] developed an approach to locate structural damage (e.g. delami-

nation or through-hole damage) in CF/EP composite laminates, using digital damage

fingerprints (DDF) extracted from raw Lamb wave signals. A multi-layer feed-forward

NN was designed and trained under the supervision of an error-backpropagation algo-

rithm. Assisted by an active online structural health monitoring )system, the method-

ology was validated by locating the actual delamination and through-hole damage in
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CF/EP (T650/F584) quasi-isotropic composite laminates. The results showed that such

an approach is able to predict the damage location much more quickly. Exponential

decreases in time consumption forNN training and in requirements for computational

tools have been achieved, without any decrease in prediction precision. It was pro-

posed that this approach is more practical and economical for low cost engineering

applications.

2.5 Feature Selections

The identification of features receives great attention in the damage detection. Feature

selection is the minimum portion of the data that allow one to distinguish between dif-

ferent types of the damaged and undamaged components or systems. The best features

for damage detection are typically application specific. A variety of methods are em-

ployed to identify features for damage detection. This is illustrated in more detail in

Chapter3.

Lindh et al. [52] introduced a new automatic analysis method for the detection of

cyclic bearing faults. The method uses a multivariate statistical fault classification and

fuzzy logic. Features are extracted from an envelope spectrum of the frame accelera-

tion of a motor frame. The features are created from the coefficients of the envelope

spectra calculated from the motor frame acceleration signal. The expected bearing

pass frequencies (cited in [52]) for different fault types are calculated and the peaks

near to these calculated values are selected as features. A bearing fault feature vector

consists of 16 components of a signal envelope at selected frequencies. The selected

components represent the characteristic fault frequencies and their three nearest har-

monic frequencies for all the following faults: outer race fault, inner race fault, rolling

element fault, and cage fault. The classification results are presented in Tables2.2and

2.3.

Table2.2presents the classification results using a16- dimensional feature space, cov-
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Table 2.2:Classification results using16- dimensional feature space [52].
healthy outer race inner race ball spin cage
healthy 0.6981 1.3607 2.7905 1.6052 2.3892

outer race 5.3817 1.2018 7.0394 8.7226 7.5465
inner race 2.9616 3.2331 1.0653 2.7675 2.7684
ball spin 6.5451 5.3318 8.2085 1.0579 6.7352

cage 0.7758 1.4425 0.8656 1.7417 0.1666

Table 2.3:Classification results using four dimensional feature space [52].
test data distance to outer race inner race ball spin cage
healthy healthy 0.1767 0.148 0.1107 0.138

broken 0.781 4.235 1.2339 1.3203
outer race healthy 3.9542 0.2946 0.2454 0.2164

broken 0.0394 6.5133 1.4492 1.4779
inner race healthy 0.556 2.4608 0.441 2.0332

broken 1.385 0.3182 1.6345 2.656
ball spin healthy 0.2327 0.3109 4.4202 0.1176

broken 0.9328 4.1784 0.2219 1.7265
cage healthy 0.2827 0.3915 0.2275 4.0238

broken 1.0563 5.0148 1.7709 0.073

ering all four fault types. Table2.3presents the classification results using four dimen-

sional feature space. Both indicate only correct classification results. The statistical

distance between healthy and broken cases is bigger when four dimensional feature

space is used. On the other hand, there is a bigger risk of misclassification if the shape

of the test feature vector changes. It is important to bear in mind, firstly, that the correct

classification was obtained without any tuning of the prototype vectors, and secondly,

that there can be many other fault modes that were not taken into account and much

more research work should be done with various fault types and motors before jump-

ing into conclusions that generalize the result obtained with these tests. The results

obtained in this study clearly demonstrated the advantages of introducing both quan-

titative and qualitative features in the calculation as well as combining the statistical

classification and fuzzy logic.

Reddy and Ganguli [53] presented aNN approach for the detection of structural dam-

age in a helicopter rotor blade using rotating frequencies of the flap (transverse bend-
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ing), lag (in-plane bending), elastic torsion and axial modes. A finite element method

was used for modeling the helicopter blade. Several combinations of modes are inves-

tigated for training and testing theNN. Using the first10 modes of the rotor blade for

damage detection yields accurate results for the soft in-plane hingeless rotor considered

in this study. Using a parametric study of the blade rotating frequency in conjunction

with theNN, it was found that a reduced measurement set consisting of five modes (the

first two torsion modes, the second lag mode and the third and fourth flap modes) also

gave good results for damage detection. Furthermore, taking only the first four flap

modes also resulted in good damage detection accuracy.

2.6 Summary

All above mentioned researches lend valuable insights to the problems association

with the damage detection in engineering materials. There are different gaps need

to be filled. The first gap is concerning the implementation of Bayesian networks.

Different machine learning techniques have been implemented for damage detection

in engineering materials. The Neural networks have greatly attracted the attention of

the researchers more than the other techniques and have been widely implemented for

the damage detection. However, one of the main drawbacks of Neural networks is the

number of hidden layers, which must be specified in advance. Nonetheless, some of

the researchers think that one or two hidden layers is enough to simulate any damage

detection system. Most of the studies carried out do not lend themselves for complex

damage detection systems. They detect the damage, but do not tell exactly what is

there (e.g. the type of the damage, the size, etc.). Generally, the implementation of all

machine learning techniques in the damage detection were very primitive, this might

be due to the complex nature of these techniques.

The second gap is concerning the method used for feature extraction and selection.

Most of the feature selection and extraction methods employed for damage detection
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have been borrowed from other fields and it is seldom to find any technique, which

is developed based on the damage detection background. They been have borrowed

and implemented for specific types of materials and nondestructive testing techniques,

which made them difficult to be generalized for other materials and nondestructive

techniques. The features extracted and selected by some of these techniques have

limitations in representing the whole input data. For example, the peaks of input waves

used for damage detection can be guaranteed to represent the whole waves, since more

than on groups of waves can give the same or similar peaks. Therefore, it is important

to develop an new feature extraction techniques for the damage detection.
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CHAPTER 3

Theory Background

The objective of this chapter is to present the theory upon which the this research is

based so as to make the thesis as self-contained as possible. All relevant theories are

explained to the level at which it is used in the subsequent chapters.

Structural health monitoring systems and Bayesian networks play important role in this

thesis. In the first part of this chapter, the definition of the structural health monitoring

systems is presented and some of their required components are presented, including

sensor and actuator elements, vibration and analysis methods, and intelligent signal

processing. In the second part the Bayesian networks are presented in terms of dam-

age axioms, the representation of the networks, Bayesian networks as classifiers, and

learning the networks are presented.

3.1 STRUCTURAL HEALTH MONITORING SYSTEMS

The damage inEMscan be described with a number of different terms, such as health

and monitoring of structures. Intuitively, health is the ability to perform and maintain

the structural integrity throughout the entire lifetime of the material, monitoring is

the process of diagnosis and prognosis, and damage is the failure of material. In this

context, the meaning of the damage detection is the same as that of theSHM and

the SHM is a safety issue.SHMscan be considered as a real-time (continuous) and

discontinuous system. A real-timeSHM system is one that continually monitors a
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structure during operation, and produces data that can be directly utilized at any point

by either an operator or ground control station (see Figure3.1). A discontinuousSHM

system is one that can only be accessed post-operation and could contain either a stored

record of operational health data or might involve performing an integral inspection

upon demand [56].

Figure 3.1:A real-time system to monitor a plane structure

There are a number of different approaches to specify theSHM. One of these ap-

proaches is based on direct visual observations and various physical phenomena. This

approach is limited to single-point measurements but allows surface scanning if a com-

plete structure is considered to be analyzed. Another approach, indirectly relates var-

ious parameters or symptoms to possible structural conditions. This approach moni-

tors for damage globally and does not require single-point measurements. Examples

include the usage of impact damage detection inCMs. Both approaches utilize the re-

lationship between the symptom of damage and the structural damage condition. Dif-

ferent physical models and system identification procedures are used to establish this

functional relationship. More recently artificial intelligent methods have been used to

solve the problem (e.g. neural networks, fuzzy-logic, etc.). In this context, the group

of methods based on the symptom and damage relationship is commonly known as

SHM [54].
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There are several components required to design a completeSHM system, including

sensor and actuator elements, processing and communication chips, a power supply,

and some form of packaging to integrate and protect these components. TheSHM

determines the condition of the monitored structure by examining the output of sensors

attached to or embedded in the material to form an integral part of it. This may involve

measuring strain values or vibration characteristics at different points in the material.

The establishment of relevant parameters used to monitor or detect damage is one of

the major problems in this area as well as the prediction of subsequent damages. All

aircraft structural health and usage monitoring approaches consider stress as symptom

used for damage monitoring. Levels of stress can be estimated relatively easy from

load models, strain, or flight parameters [54].

The requirements placed onSHM are strict if they are to replace current inspection

methods performed by skilled labors. Considering the demands placed on the sen-

sors, they must be sufficiently sensitive to detect indicators of damage. They must be

stable, durable and reliable for the lifetime of the structure they are monitoring. Reli-

ability is crucial. If automatic systems are to replace human inspections we must have

absolute confidence in them. They should not produce too many false positives and

certainly should not miss damage features they are supposed to detect. Many initial

installations of integratedSHM will have to prove their worth alongside conventional

inspection techniques. They must also be cost-effective. That is, the cost of installing

the system must be less than an equivalent inspection regime (unless the safety or per-

formance benefits outweigh the cost) and the sticker price should not deter potential

users. Conventional measurement systems simply cannot satisfy all these requirements

simultaneously.
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3.1.1 Vibration and Modal Analysis

Damage can be often considered as a modification of physical parameters such as

mass, stiffness or damping. A number of vibration-based parameters have been used

for structural health monitoring. The application of modal analysis is one of the most

popular approaches since the classical work on the use of natural frequencies for dam-

age detection in structures. Previous studies show that modal shapes and damping

can also be used to detect damage. Other applications in this area involve modal en-

ergy, curvatures, and transfer functions. Vibration-based data have been employed

with some success to detect aircraft structural damage. However, the major problem

in this area is related to damage sensitivity. Modal and vibration based techniques are

in fact global methods. A number of studies have been performed on beams and plates

where cracks originated from the specimen’s surface perpendicular to the applied nor-

mal stress. However, very long cracks or delaminations are required to affect the struc-

tural physical and/or modal parameters in the case these cracks and delaminations are

parallel to the loading direction. Despite different reports on successful crack detec-

tion, the ability of vibrational/modal techniques for damage inspection in aerospace

structures becomes somewhat questionable and leads the ongoing discussion on global

and local monitoring. Experimental results show that the size of damage (e.g. delam-

ination in CM) must be at least10% of the area monitored to be reliably detectable

[54].

3.1.2 Monitoring Techniques and Sensor Technology

Sensors are used to record variables such as strain, acceleration, sound waves, elec-

trical or magnetic impedance, pressure or temperature. Marantidiset al. [57] have

estimated that aSHMsystem for an aerospace vehicle would require between100and

1000sensors, depending on its size and desired coverage area. Sensing systems can

generally be divided into two classes: passive or active sampling (see Figure3.2).
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(a) Active sensing (b) Passive sensing

Figure 3.2:Active and passive sensing systems used by piezoelectric materials [55]

Active sampling systems3.2(a)are those that require externally supplied energy in

the form of a stress or electromagnetic wave to properly function, they provided their

own source of energy. A few strain-based examples of active systems include elec-

trical and magnetic impedance measurements, eddy currents and optical fibers which

require a laser light source. Passive techniques tend to be simpler to implement and

operate within aSHMsystem and provide useful global damage detection capabilities,

however generally active methods are more accurate in providing localized informa-

tion about a damaged area. Passive sampling systems3.2(b) are those that operate

by detecting responses due to perturbations of ambient conditions without any artifi-

cially introduced energy (e.g. strain measurement by piezoelectric wafers), they rely

on energy emitted from other sources[56].

3.1.2.1 Smart Structures and Materials

Materials and structures, which are able to sense and perhaps respond to a change in

their environment are commonly known as smart. Smart structures and materials have

opened new opportunities for damage monitoring. In general damage monitoring sys-

tems, which utilize smart structures and material technologies are concerned with a

design philosophy directed to the integration of actuators, sensors, and signal proces-

sors. The attractive potential of such technologies arise from the added value in terms

of more reliable damage monitoring systems, reduced inspection monitoring cost and

improved safety. The last ten years have seen an enormous mount of research in this
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area. This includes new materials (piezopolymers, piezoceramics), sensors, and ac-

tuators (MEMS, Micro-surface acoustic waves -MSAWdevices) and intelligent data

processing (pattern recognition, data fusion, neural networks, combinatorial optimiza-

tion based biological and physical systems, and much more).

3.1.2.2 Damage Detection Techniques

In principle all theNDT techniques mentioned before can be considered as imple-

mented onto or into a component to be monitored, which in the end is already some

initial type of smart structure. With regards to simplicity and availability of sensing

and possibly also actuation elements, piezoelectric elements have turned out to be one

of the types being highly viable. The acousto-ultrasonic technique therefore looks to

be one of the very promising techniques to start with. It is based on stress waves intro-

duced to a structure by a probe at one point and sensed by another probe at a different

position. The frequency of these waves can go up toMHz. Various types of signal are

used as input excitation including impulse, sine burst, sine sweep, and Gussian white

noise signal. Damage in a structure can be identified by a change of the output signal.

Often attenuation is sufficient to detect defects.

Lamb wave inspection is based on the theory of guided waves propagating in palates.

In general, the principles of acousto-ultrasonic and Lamb wave inspections are simi-

lar. Also, signal processing used for damage detection in similar and is often based

on wave attenuation and/or wave dispersion. The factors, which determine the Lamb

wave inspection, are related to properties of the structure under inspection and trans-

ducer schemes. Other important elements, which form the monitoring strategy include

various aspects related to transducer coupling methods, types of excitation signals,

optimal sensor location, sensor validation, and intelligent signal processing.
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3.1.2.3 Sensor Technologies

Various sensor technologies are currently available which can be either adapted onto or

integrated into the structure to be monitored. These include, piezoelectric, optical fiber,

micro-electro-mechanical systems (MEMS), and strain-gages sensors, etc. (see Figure

3.3). The maturity and networking capability of the various sensor types depends on

the conditions of usage and structural application.

(a) Piezoelectric (b) Fiber-optic (c) HEMS (d) Strain-gages

Figure 3.3:Different types of sensors used for structural health monitoring [55]

There are several issues involved in the practical usage and implementation of struc-

tural health monitoring systems using the sensors defined above. These include [55]:

• Sensor integration

• Calibration

• Reliability

• Effect of environmental conditions

These practical issues are discussed by using an example of piezoelectric materials.

Piezoelectric sensors and actuators are made of piezoelectric materials (piezo-crystals,

ceramics, and polymers). Materials that have a piezoelectric effect convert mechan-

ical force to electrical charge, and vice versa. Hence, piezoelectric materials can be

used as both sensors and actuators. As sensors, they produce an electrical signal when

they are physically deformed (strained). As actuators, they physically deform (expand,

contract, or shear) when an electrical charge is applied. Using this property, piezo-

electric materials can be used to measure stress and strain and can also be used to
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mechanically excite the structure to propagate stress waves and induce internal vibra-

tions. Inputting a time-varying electrical signal to any of the actuators/sensors causes

a propagating stress wave or propagating mechanical deformation to emanate from the

sensor/actuator and travel through the material for detection by a plurality of neighbor-

ing sensors/actuators.

A lot of development work has been done in the area of optical fiber sensors. The

major advantage of these sensors is their immunity to electromagnetic fields and their

compatibility with data transmission systems. However, more work needs to be done

in this area regarding material integration and reparability procedures. Optical fiber

sensors have been used for monitoring the curing process and/or damage induced by

impact and overloads inCMs. Optical fiber sensors are also increasingly used for strain

and temperature measurements. Recent development in this area shows applications

of Bragg-Grating sensors for acousto-ultrasonic monitoring. It is quite feasible that

multi-functional optical fibre sensors will be soon available for both strain and damage

monitoring.

Piezoelectric materials have been used for years for actuating and sensing stress waves.

However, only recently these materials have become available in the form of ceramic

sensors are also available on Kapton layers in the form of so called smart layers, which

can be embedded or bonded on structural components and here specifically in areas

prone to damage such as notches. A variety of sizes and shapes for these sensor layers

can be made available and basically tailored according to customer needs.

Actuating and sensing for active damage detection can be accomplished using other

new technologies such as interdigital transducers, phase array transducers, piezoelec-

tric paints, andMEMS.

As mentioned above, thePZT can be used in dual sensing modes, passive and active.

In the passive sensing mode, the structural health monitoring system:

1. Finds location of impacts

3.8



2. Records date/time of occurrence

3. Determines impact force/energy (to predict structural damage)

No calibration is required for impact location. However, in order to determine the

impact force/energy, calibration with known impact forces is required. This can be

typically done with the use of an instrumented hammer as shown in Figure3.4.

Figure 3.4:Calibration of impact force with instrumented hammer [55]

3.1.2.4 Intelligent Signal Processing

Intelligent signal processing is the key element, which builds the bridge between the

sensor signal and the structural integrity interpretation. Various methods have been de-

veloped in recent years. This includes: data pre-processing techniques, outlier analy-

sis, feature extraction and selection (e.g. signature analysis, time-frequency analysis,

wavelets) and pattern recognition (e.g. neural networks, novelty detection). All these

methods lead to signal features, which are sensitive to damage but insensitive to bound-

ary, load or environmental conditions.

Sensors are usually deployed in arrays. Multi-sensor architectures not only improve

the signal to noise ratio but also offer better robustness, reliability and confidence in

the results. Sensor data and information (e.g. flight parameters) can be combined using

various fusion techniques such as physical models, parametric methods, information

techniques and cognitive-based models.
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The fewer sensors need to meet the requirements set for structural health monitoring,

the better the overall reliability, signal processing effort and thus smaller cost for the

damage monitoring system. The optimal sensor number and their locations can be

established using various combinatorial techniques and mutual information approach.

Sensor architectures also require validation procedures, which are important to detect

sensor failures. These exist various methods in this area based on statistical analysis

and neural networks.

3.2 BAYESIAN NETWORKS

Bayesian networks (BNs) have evolved as a powerful probabilistic graphical modeling

tool, which encodes probabilistic relationships among variables of interest under do-

mains of uncertainty. During the 1990s, they have attracted a great deal of attention

from research communities as well as from industry [59]. They are widely used as a

modeling tool for diagnosis, analysis, and decision making in real world of uncertain

domains., e.g. modeling knowledge in gene regulatory networks, medical diagnostic

systems, text analysis, and image processing. They do not necessarily require a com-

mitment to the Bayesian methods. They are so called because they use Bayes’ rule for

probabilistic inference (it is articulated later in this section).

The following quotation [60] gives a very concise introduction to graphical models.

Graphical models are a marriage between probability theory and graph
theory. They provide a natural tool for dealing with two problems that oc-
cur throughout applied mathematics and engineering−− uncertainty and
complexity−− and in particular they are playing an increasingly impor-
tant role in the design and analysis of machine learning algorithms. Fun-
damental to the idea of a graphical model is the notion of modularity−−
a complex system is built by combining simpler parts. Probability theory
provides the glue whereby the parts are combined, ensuring that the sys-
tem as a whole is consistent, and providing ways to interface models to
data. The graph theoretic side of graphical models provides both an intu-
itively appealing interface by which humans can model highly-interacting
sets of variables as well as a data structure that lends itself naturally to
the design of efficient general-purpose algorithms.
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Many of the classical multivariate probabilistic systems studied in fields
such as statistics, systems engineering, information theory, pattern recog-
nition and statistical mechanics are special cases of the general graphical
model formalism examples include mixture models, factor analysis, hidden
Markov models, Kalman filters and Ising models. The graphical model
framework provides a way to view all of these systems as instances of a
common underlying formalism. This view has many advantages in par-
ticular, specialized techniques that have been developed in one field can
be transferred between research communities and exploited more widely.
Moreover, the graphical model formalism provides a natural framework
for the design of new systems.

BNsas graphical models have several advantages for data analysis, when used in con-

junction with statistical techniques [72]:

1. They handle situations where some data entries are missing, because the model

encodes dependencies among all variables. For example, consider a classifi-

cation problem where two of the input variables are strongly anti-correlated.

This correlation is not a problem for standard supervised learning techniques,

provided all inputs are measured in every case. When one of the inputs is not

observed, however, most models will produce an inaccurate prediction, because

they do not encode the correlation between the input variables.BNsoffer a nat-

ural way to encode such dependencies.

2. They can be used to learn causal relationships, and hence can be used to gain

understanding about a problem domain and to predict the consequences of in-

tervention. Learning about causal relationships are important for at least two

reasons:

• The process is useful when trying to gain understanding about a problem

domain, for example, during exploratory data analysis.

• Knowledge of causal relationships allow making predictions in the pres-

ence of interventions. For example, a marketing analyst may want to know

whether or not it is worthwhile to increase exposure of a particular adver-
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tisement in order to increase the sales of a product. To answer this question,

the analyst can determine whether or not the advertisement is a cause for

increased sales, and to what degree. The use ofBNshelps to answer such

questions even when no experiment about the effects of increased exposure

is available.

3. They are an ideal representation for combining knowledge (which often comes

in causal form), because the model has both a causal and probabilistic semantics.

BNshave a causal semantics that makes the encoding of causal prior knowledge

particularly straightforward. In addition,BNsencode the strength of causal re-

lationships with probabilities. Consequently, prior knowledge and data can be

combined with well studied techniques from Bayesian statistics.

4. Bayesian statistical methods in conjunction withBNsoffer an efficient and prin-

cipled approach for avoiding the over-fitting of data. Using the Bayesian ap-

proach, models can be ”smoothed” in such a way that all available data can be

used for training.

This chapter introduces theBNsby discussing the representation of the network, how

can the hidden states of a system efficiently be inferred given partial and possibly noisy

observation (the inference), how the parameters are estimated and the the networks are

constructed (learning), and what happens when it is time to convert beliefs into actions.

All of the examples shown in the section are related to damage detection inEMs. The

chapter discusses also different types ofBNsclassifiers, methods for learning both the

parameters and structure of aBN. In addition, the relation betweenBN methods for

supervised and unsupervised techniques are also elaborated.

3.2.1 Representation of the Networks

Probabilistic graphical models (PGMs) compose of nodes and arcs (links) between

nodes. The nodes represent random variables, and the lack of arcs between two vari-
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ables represent conditional independency. Generally,PGMscan be divided into two

kinds:

1. Undirected graphical models, which are popular in physics and vision commu-

nities. They are also known as Markov networks or Markov random fields. The

links in these models have no direction.

2. Directed graphical models, which are known as Bayesian networks. They are

more popular in machine learning and Artificial intelligence.

A third type of models can also be considered, which is called a chain graph. This type

of models contains both directed and undirected links.

BNsformalism provides a powerful framework for the modeling of uncertain interac-

tions among random variables in a domain. They are a brief representation of a joint

probability distribution on a set of statistical variables [61]. BNsconsist of a quali-

tative part, where features from graph theory are used, and an associated quantitative

part consists of potentials, which are real-valued functions over a set of variables from

the graph. The variables can take discrete and continues values. In this thesis only the

variables with discrete finite valued attributes are considered.. The structure ofBNs

can be show as follows [62]:

• A network structureG = {V, E}, whereV = {V1, V2, . . . ,Vn} represents a set of

n variables andE represents a set of directed arcs between the variables.

• Each variable has a finite set of mutually exclusive states.

• A set of conditional probability tables (CPTs) associated with each variable.

The directions of the arcs inBNsoften represent causal dependency between variables.

The variables in anBN represent events in a domain. These events are connected

with directed links. A link represents a causal relationship between the events and

starts from the causal event. A causal network is a set of variables and directed links

between the variables [58]. In BNs, a variable is a parent of a child, if there is an arc
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from the former to the later.BNsmodel the quantitative strength of the connections

between them, allowing their probabilistic beliefs to be updated automatically as new

information arrive. The arcs in anyBNsare not permitted to be directed cycles, one

cannot start from a variable and simply come back to it by following the direction of

the arcs in the network. For this reason the networks are known as directed acyclic

graphs (DAGs) [59, 62].

It is worth noting however, that in some applications where the amount of training was

very limited, but a priori information about the spectra is available, the use ofBNsmay

be useful.

The values of each variable should be mutually exclusive and exhaustive, that means

the variable must take on exactly one of these values at a time. For example, if someone

consider building a model to predict the presence of a damage in anEM, many factors

might be taken into account, e.g. the age of the material (Age) and whether a tool

dropped on the material (ToolDrop). These factors can be represented as variables in

the model connected by directed links according to the direction of impacts (see Figure

3.5).

Figure 3.5:A small BN structure for damage detection in anEM

In the figure, the variablesToolDropandAgehave an impact on the variableDamage.

That means the presence of the damage can be determined by the states ofToolDrop

andAge. No one can argue that the damage was the cause of dropping the tool on the

material or has an impact on the age of the material. Every variable can take one of a
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different type of discrete values (the states of the variable). The variablesDamageand

ToolDropmight be represented by states, which take boolean valuesyesandno. The

variableAgemight be represented by states that take ordered values,new, medium, and

old.

3.2.2 Causal Networks andd-Separation

A causal network is a directed graph, which consists of a set of variables and a set of

directed links between variables. It can be used to follow how a change of certainty in

one variable may change the certainty of other variables. In order to understand that

a set of rules for reasoning under uncertainty are illustrated bellow. These rules are

independent of the particular calculus of uncertainty [59].

3.2.2.1 Serial Connections

Consider the causal chain of the three variables shown in Figure3.6, whereAgecauses

Damagewhich in turn causesAmplitude(causes the value of the wave’s amplitude to

increase).

Figure 3.6:Serial Connection.

In the figure, if we do not know whether the material has damage, but we are sure

that it is an old material (Age= old), that would increase our belief that the material

has damage and the amplitude would be high. However, if we already know that the

material has damage, then the age of the material would not make any change to our

belief about the amplitude. That means if we know the stage of the variableDamage,

then evidence is blocked for transmission fromAgeto Amplitude(AgeandAmplitude
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become independent). The conditional independence of this causal chain can be shown

as follows:

P (Amplitude| Damage, Age) = P(Amplitude| Damage)

In this case, it can be said thatAmplitudeand Age are d-separated givenDamage.

Thed in thed-separation stands for dependency. This kind of connection is known as

serial connection in which evidence may be transmitted through it unless the state of

the variable in the connection is known.

3.2.2.2 Diverging Connections

In Figure3.7, the variableDamagehas a cause on the two variablesAmplitude Value

andUltrasonic Velocity. If there was damage in a material, the amplitude value would

be increased and the ultrasonic velocity would be decreased.

Figure 3.7:Diverging Connection

This situation of causal chain is called diverging connection and its conditional inde-

pendence can be represented as:

P (Ultrasonic Velocity| Damage, Amplitude Value) = P(Ultrasonic Velocity| Damage)

The Ultrasonic Velocityis d-separated from theAmplitude Valuegiven theDamage.

If there is no evidence or information about damage, then learning that the ultrasonic

velocity is high will increase the probability of ultrasonic velocity to be high. Evidence

aboutUltrasonic Velocitycan pass toAmplitude Valueunless the state ofDamageis

known. In this case the parent variable can has more than two children. It can be
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concluded that evidence my be transmitted through a diverging connection unless the

state of the parent is known.

3.2.2.3 Converging Connections

The situation of the causal chain shown in Figure3.8 is known as converging connec-

tion. The description of this connection needs a little of care, which is the inverse of

the previously mentioned connections. If nothing is known aboutDamageexcept what

may be inferred from knowledge of its parentsAgeandToolDrop, then the parents are

independent, that means evidence on one of them has no influence on the certainty of

the others. However, if we are sure that there is damage or no damage in the material

or one know the state of any one of the descendants of theDamage, then information

on the age of the material may tell us something about whether a tool drooped in the

material or not. For example, if we know that there is a damage in the material, then

knowing that the material is not old will increase the probability of a tool drooped in

the material.

Figure 3.8:Converging Connection

The result is that evidence may only be transmitted through a converging connection

from a parent of the variable in the connection to another parent, if either the variable

in the connection or one of its descendants has received evidence.
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3.2.2.4 d-Separation

The three preceding cases (serial, diverging, and converging connections) show how

BNsrepresent conditional independence; how these independence affect belief change

during updating, and cover all the ways in which evidence may be transmitted through

a variable in causal chain. Following the above mentioned rules it is possible to decide

whether any pair of variables in a causal network are independent given the evidence

entered in the network. These rules can be formulated by the following definition [59].

Definition 1 (d-separation:). Two distinct variablesX and Y in a causal network are

d-separated if, for all pathes betweenX and Y, there is an intermediate variableR

(distinct fromX andY) such that either :

• The connection is serial or diverging and the sate ofR is known or

• The connection is converging, and neither the state of R nor any of the states of

R’s descendants is known.

If X andY are notd-separated, they are calledd-connected. A similar definition of

d-separation was given by Jensen [59].

There is no any requirement in theBNsdefinition that the links represent causal im-

pact and the definition does not refer to causality. It is required that thed-separation

properties implied by the structure hold.

3.2.3 The Conditional Probabilities

A way of structuring a situation for reasoning under uncertainty is to construct a graph

representing causal relations between events. The basic concept in theBN treatment

of certainties in causal networks is conditional probabilities.

If A is assumed to be a variable withn statesa1, a2, . . . , an, thenP(A) denotes a

probability distribution over these states:
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P(A) = (x1, x2, . . . , xn); xi ≥ 0;
n∑

i=1

xi = 1 (3.1)

wherexi is the probability ofA being in stateai. This can be written asP (A = ai) = xi

or P (ai) = xi, e.g. P(Age= new) = 0.8.

If the variableB hasm statesb1, b2, . . . , bn, the conditional probability statement can

be shown as follows:

”The probability of the eventa given the eventb is x.”

which can be written asP(a | b) = x. The probabilityP(A | B) implies ann × m table

including the probabilitiesP(ai | bj).

The fundamental rule for probability calculus is:

P(a|b)P(b) = P(a,b), (3.2)

whereP(a, b) is the probability of the joint eventa andb. From this, it can be said that

P(a | b) P(b) = P(b | a) P(a), and this yields the well knownBayes’ rule:

P(b|a) =
P(a|b)P(b)

P(a)
(3.3)

In Figure3.5, the variableDamagehas two parents and the variablesToolDropandAge

have no any parents. The joint probability distributions for the variables are shown as

P(Damage| Age, ToolDrop) P(ToolDrop), andP(Age). These probabilities are de-

termined by an expert or automatically extracted from a data set. Since the variables

ToolDorpandAgehave no parents, their prior probabilities can be specified as follows:
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• P(ToolDrop= yes) = 0.8andP(ToolDrop= no) = 0.2

• P(Age= new) = 0.2, P(Age= medium) = 0.7, andP(Age= old) = 0.1.

The variableDamagehas3 states and 2 parents, and each parent with2 states. The

conditional probability distribution of this variable can be shown as on Table3.1. The

table has12probability values (3 × 2 × 2).

Table 3.1:CPT for P(Damage| Age, ToolDrop).
ToolDrop yes no

Age new medium old new medium old
yes 0.2 0.4 0.9 0.01 0.5 0.4
no 0.8 0.6 0.1 0.99 0.5 0.6

BNsgive full representation of probability distributions over their variables. They can

be conditioned on any subset of their variables, supporting any direction of reasoning.

That means any variables may be query variables and any may be evidence variables.

Whenever new information have arrived new beliefs can be calculated. We have shown

thatP(ToolDrop= yes) = 0.8andP(Age= old) = 0.1. Suppose it has been discovered

that a tool is dropped on the material and the material is very old, thenP(ToolDrop=

yes) = 1.0 andP(Age= old) = 1.0. These probabilities are shown in Figure3.12 as

percentages (100.00and00.00) on bold fonts. This kind of probabilities is sometimes

referred as evidence or instantiation. InBNs, when new evidence arrive to some vari-

ables, the beliefs on other variables may be changed. This can be shown by carefully

studying Figure3.12. This process of conditioning on some variables, when observing

the value of other variables is known as probability propagation, inference, or belief

updating.

3.2.4 Bayesian Networks as Classifiers

In many problem domains where aBN network is applicable and desirable, the label(s)

for a subset of the variables (class variables) may be inferred given the states of the rest

variables.BN classifiers model the conditional distribution of the class variables given
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(a) The evidence that the tool is
dropped (ToolDrop = yes) and the ma-
terial is old (Age= old), increased our
belief on the damage to90%

(b) The evidence that the tool is not
dropped (ToolDrop= no) and the mate-
rial is new (Age= new), decreased our
belief on the damage to1%

Figure 3.9:Changing of believes on BNs, when some evidence are entered

the other variables and predict the class with the highest conditional probability.BN

classifiers have been applied successfully in many application areas including com-

putational molecular biology , computer vision, relational databases, text processing,

audio processing and sensor fusion. Its simplest form, the naive Naı̈ve bayes, has re-

ceived significant amount of attention.BNswere not considered as classifiers until the

discovery of the Näıve bayes classifiers. Since then the use ofBNs for classification

problems has received considerable attention [64].

Given a data setX with n variables (x0, x1, . . . xn), the classification task can be defined

as the prediction of the class labelxc ∈ X given a set of variables (attributes)Xa = X\Xc.

A classifierc : x→ xc is a function that maps an instance ofx to a value ofxc. A

BN classifier represents the joint distributionP(Xc,Xa) and converts it to conditional

distributionP(Xc|Xa).

The classifiers learn from training data the conditional probability of each attributeXa

given the class labelXc. Classification is done by applying Bayes rule to compute the

probability ofXc given the particular instances ofXa and then predicting the class with

the highest posterior probability. This computation is rendered feasible by making a

strong independence assumptions: all the attributesXi are conditionally independent

given the value of the classXc.
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Based on the theory of learningBNs, classifiers can be induced from data. AmongBN

classifiers are Naı̈ve bayes and tree augmented Naı̈ve bayes.

3.2.4.1 Näıve bayes Classifier

Näıve bayes has a simple structure and a strong independence assumption that all vari-

ables in the network are independent given the classification variable (as shown in

Figure3.10). All connections in the Näıve bayes go from the parent to the children,

no any connection is allowed between any pair of children. It is very easy to build a

Näıve bayes network structure, because it does not require a structure learning algo-

rithm. The performance of Naı̈ve bayes is somewhat surprising given that this is clearly

an unrealistic assumption. If one considered a classifier for assessing the risk in loan

applications, it would be erroneous to ignore the correlations between age, education

level, and income [65].

Figure 3.10:A simple Näıve bayes structure.

The Näıve bayes classifier learns from training data the conditional probability of each

variableXi given the class labelC. The classification is then done by applying Bayes

rule to calculate the probability ofC given the particular instance ofX1, X2, . . . , Xn,

and then predicting the class with the highest posterior probability [65], giving:

P(Ci |X) =
P(Ci)P(X|Ci)

P(X)
=

P(Ci)
∏N

j=1 P(xj |Ci)∑k=1
K P(Ck)

∏N
j=1 P(xi |Ck)

(3.4)
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whereK is the number of classes,J is the number of variables, andP(xj |Ck) is the con-

ditional probability for the observed value of variable j given the classCk. The product

of conditional probabilities comes from the assumption that variables are independent

given the class, which greatly simplifies the computation of the class scores and eases

the induction process. After calculatingP(Ci |X) for each class, the algorithm assigns

the instance to the class with the highest overall score or probability [66].

Although the above formulation of Naı̈ve bayes is the traditional one we can express

the score for each class in another form that is more tractable for analytical purpose.

The basic idea is that, if we are concerned only with predictive accuracy, we can invoke

any monotonic transformation that does not affect the ordering on class scores. One

transformation involves removing the denominator, which is the same for each class,

and another involves taking the logarithm for the numerator. Together, these produced

a new score [66]:

SC = logP(C) +
∑

variables

logP(xi |C) (3.5)

In fact, this form is often used in practice, since it is efficient to calculate and reduces

round-off errors due to small fractions [67]. The new scoreSC is no longer a probabil-

ity, but is quite sufficient to predict the most probable class.

The discussion so far has derived the independent feature model, that is, the Naı̈ve

bayes probability model. The Naı̈ve bayes classifier combines this model with a de-

cision rule. One common rule is to pick the hypothesis that is most probable; this is

known as the maximum a posteriori (MAP) decision rule. The corresponding classifier

is the function classify defined as follows:
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classi f y(X1,X2, . . . ,Xn) = argmaxcp(C = c)
n∏

i=1

p(Xi = fi |C = c) (3.6)

The Näıve bayes classifier has several properties that make it surprisingly useful in

practice, despite the fact that the far-reaching independence assumptions are often vi-

olated. Like all probabilistic classifiers under theMAP decision rule, it arrives at the

correct classification as long as the correct class is more probable than any other class;

class probabilities do not have to be estimated very well. In other words, the overall

classifier is robust enough to ignore serious deficiencies in its underlying naive proba-

bility model. Other reasons for the observed success of the Naı̈ve bayes classifier are

discussed in the literature cited below.

Näıve bayes has two main advantages over other classifiers. First, it is easy to construct

no learning procedure is required (as mentioned above). Second, the classification

process is very efficient since it assumes that all the features are independent of each

other. In practical classification problems, it is hardly to come across a situation where

the variables are truly conditionally independent of each other. Nevertheless, the Naı̈ve

bayes classifier surprisingly outperformed many sophisticated classifiers on data sets

where the variables are not strongly correlated.

3.2.4.2 Näıve Bayes Classifier for Damage Detection

The amplitudes shown in Figure3.11 represent voltage amplitudes of Lamb-waves

produced and collected byPZTsensors and actuators mounted on the surface of quasi-

isotropic graphite/epoxy laminates. The first specimen is a control unit (laminate with-

out damage), and the rest of the specimen contain artificial damages.

These damages are delamination, crack, and hole. The figure shows that sound waves

behave differently when passing through the laminate without and with damage, and
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(a) Without damage (cronrol). (b) Delmination.

(c) Crack. (d) Hole.

Figure 3.11:Time trace of voltage amplitudes from graphite/epoxy laminates.

every damage produces differing amplitudes. Amplitudes with many cases and differ-

ent kind of damages can be used to learn the conditional probability tables of variables

(P(Amplitudei | Damage)) in the network. Ultimately, the model can be used to predict

the damages in laminated composite materials with the highest posterior probability.

The probabilities of the damages are determined by entering the new evidence obtained

from the amplitudes of the new case to the network. The model to predict the damages

can be represented by the Naı̈ve-bayes classifier shows in Figure3.12.

Figure 3.12:A Näıve Bayes classifier for damage detection using wave’s amplitudes.

The amplitudes shown in Figure3.11were generated by using a constant interval of

time (microseconds). For every laminate a set of600amplitudes were collected. If all
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of these amplitudes were used as variables on the damage detection model, the model

would be overwhelmed, complicated, and its accuracy might slightly be decreased.

Different techniques have been adopted for feature subset selections to decrease the

size of the data and increase the accuracy. Some of these techniques extract the peaks

of the amplitudes as feature subsets, but it is very difficult to be sure whether these

peaks can be representative to the whole wave. The rest of the techniques have different

kinds of limitations and disadvantages. So as to overcome some of these limitations

and tackle some of these disadvantages, thef -folds feature subset selection algorithm

has been developed.

3.2.5 Tree Augmented Näıve bayes Classifier

The strong assumption made by the Naı̈ve bayes classifier that all the variables in the

data set are conditionally independent given the value of the class is very likely not

to be fulfilled. Nevertheless, the classifier works well in practice even when there are

strong dependencies in the data set. Friedmanet al. [65] introduced the tree augmented

Näıve bayes classifier (TAN) as a natural extension to the Naı̈ve bayes classifier (Figure

3.13shows an example of aTAN structure).TAN models are based on the structure

of the Näıve bayes network and a restricted family ofBNsin which the class variable

has no parents and each of the rest of variables has as parents the class variable and at

most one other variable which means that there is an edge in the graph from variable

Xi to variableXj. This implies that these two attributesXi andXj are not independent

given the class label. The influence ofXj on the class probabilities depends also on

the value ofXi. Hence, the posterior probabilityP(Y | X1, . . . , Xn) takes all the

variables into account. Additionally, edges among the variables are allowed in order to

capture the correlations among them. The maximum number of edges added to relax

the independence assumption betweenn variables isn - 1 [68, 69].
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Figure 3.13:Structure of tree augmented Naı̈ve bayes structure.

3.2.6 Selective Unrestricted Bayesian Network Classifier

The selective unrestricted bayesian network classifier (SUN) (cited in [69]) can be

viewed as a generalization of theTAN network. The class variable may have variables

as parents [69] (see Figure3.14).

Figure 3.14:General structure of a selective unrestricted bayesian network

The variables need not be connected directly to the class variable as for the treeTAN

network. After initialization the network may consist of the variables without any

links. A search algorithm can be used to add links to the network according to an

evaluation criterion. If there is no link between a variable and the classifier network

then the variable is not considered during classification. During the determination of

the network structure, irrelevant features are not included and the classifier is based

on a subset of selected features. This unrestricted network structure maximizes the
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classification performance by removing irrelevant features and relaxing independence

assumptions between correlated features. Since this network is unrestricted, the com-

putational demands for determining the network structure is huge especially if there is

a large number of variables available. Additionally, the size of the conditional proba-

bility tables of the variables increases exponentially with the number of parents. This

might result in a more unreliable probability estimate of the variables, which have a

large number of parents [69].

The posterior probability distribution ofC given the value of all variables is only sen-

sitive to those variables, which form the Markov blanket of nodeC [70]. The Markov

blanket of the class variableC consists of the direct parents ofC, the direct succes-

sors (children) ofC, and all the direct parents of the direct successors (children) of the

class nodeC. All the features outside the Markov blanket do not have any effect on

the classification performance. Introducing this knowledge into the search algorithm

reduces the search space and the computational effort for determining the structure of

the classifier [69].

Since there are means to represent and manipulate independence assertions of theBNs,

betterBNscan be induced by learning unrestricted networks.

3.2.7 Learning Bayesian Networks

LearningBNsfrom data is a rapidly growing field of research that has seen a great deal

of attention in recent years [71–73]. LearningBNscan be decomposed into two major

learning tasks. Learning the graphical structure and the parameters (CPTsentries) for

the graphical structure. It is trivial to learn the parameters for a given structure that

are optimal for a given corpus of complete data. Simply use the empirical conditional

frequencies from the data [74]. The learning problem ofBNscan be stated as follows

[75]:

Definition 2 (BN learning). Given a data set, infer the topology for the belief network
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that may have generated the data set together with the corresponding uncertainty dis-

tribution.

This definition is given from the data mining point of view, where theBN extracted by

the learning algorithm is considered to be a model of the data set. Nevertheless, most

of the parts of the learning algorithm can be identified.

In this part of the thesis general descriptions on learningBN is given.

3.2.7.1 Structure Learning

Learning the structure ofBN is known to beNP-complete [63, 76]. Generally, meth-

ods of learningBN structures from data typically divided into two groups. The first

approach is a dependence analysis method that poses learning as a constraint satisfac-

tion problem. The algorithms in this approach try to discover the dependencies from

the data, usually this is done using a statistical hypothesis test, such asχ2-test. We

then build a network that exhibits the observed dependencies and independencies. The

second approach is a searching and scoring based method that poses the learning as

an optimization problem. This kind of algorithm defines a ”score” that describes the

fitness of each possible structure to the observed data. Commonly used scores include

Bayesian score [74, 77] and Minimum Description Length (MDL) score [78]. Then

the structure learning problem becomes an optimization problem: find the structure

Sopt that maximizes (or minimizes depending on how the score is defined) the score.

An important property of some score functions is decomposability. That is, the score

function can be decomposed as follows:

S core(S,D) =
∑

i

S core(Xi , pa(Xi),D(Xi , pa(Xi))) (3.7)

HereS denotes theBN structure,D denotes the entire data, andD(Xi , pa(Xi)) denotes

3.29



the data involving onlyXi andpa(Xi).

One of the most widely used structure learning algorithm is theK2 algorithm [74].

It belongs to the second approach. The structure learning problem can be stated as

follows: Given the complete training data setD (no missing value) and a node order,

find a network structureS that best matchesD. Suppose the prior of the parameters

(when the structure is fixed) is Dirichlet:

p(Θ | S) ∼ Di(αi j1, αi j2, . . . , αi jr i ). Let Ni jk be the number of samples inD for which

Xi = k andpa(Xi) = j. Then the posterior distribution is also Dirichlet:

p(Θ | S, D) ∼ Di(αi j1 + Ni j1, αi j2 + Ni j2, . . . , αi jr i + Ni jr i ).

We can then write

p(D|S) = K2(S,D) =

n∑

i=1

qi∑

j=1

Γ(αi j )

Γ(αi j + Ni j )
× (

r i∑

k=1

Γ(αi jk + Ni jk)

Γ(αi j )
) (3.8)

and

K2(Xi , pa(Xi)) =

qi∑

j=1

Γ(αi j )

Γ(αi j + Ni j )
× (

r i∑

k=1

Γ(αi jk + Ni jk)

Γ(αi j )
) (3.9)

whereNi j =
∑r i

k=1 Ni jk andαi j =
∑r i

k=1. P (D | S) is called Cooper-Herskovits scoring

function. In this thesis, it is referred as theK2 score since it is the score function of

K2 algorithm. Note that theK2 score satisfies the decomposability property. Having

defined a score, the next step is to identify a network structure with the highest score.

Generally, this search problem isNP-hard. So there is a need to use sub-optimal search

methods. Most widely used search methods forBN structure learning use the decom-

posability property. These search methods make a series of arc changes (addition or
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deletion of one arc at a time). After each arc change, the resulting graphS must be

checked whether it is a validDAG. For each arc change, there is a scoreS coreb for

theDAG Sb before the change andS corea for DAG Sa after the change. Acceptance

of the change depends on the difference between the two scores. If a score satisfies the

decomposability property, the search can be done node by node. For each node, only

S core(Xi, pa(Xi)a, D(Xi, pa(Xi)a)) needs to be evaluated and not the whole score. This

can simplify the computation considerably.

3.2.7.2 Parameter Learning

Once theBN structure is specified is built, it constitutes an efficient device to perform

probabilistic inference. Nevertheless, the problem of quantification of the network re-

mains as a daunting task, which often requires filling a huge number ofCPTs. On the

other hand, the sensitivity of the networks performance to variations in different prob-

ability parameters may be quite different; thus, certain parameters should be specified

with a higher precision than the others.

TheCPTscan be filled by one of three ways [79]:

1. Elicit the probability parameter by consulting domain experts. However, this can

be quite expensive and time consuming.

2. Another was is estimate the parameters from the available data. Unfortunately,

when the number of probability parameters inBNs is huge, a quite large data

sets may be required to estimated accurate parameters, especially for probability

distributions that describe rare events. In real applications, the databases are

often scarce and results in erroneous values for the rare-event probabilities.

3. Utilizing the domain knowledge as well as the data

The classical approach for learning parameters is the likelihood maximization. This

leads, with the classical decomposition of the joint probability in a product, to esti-
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mate separately each term of the product with the data. This method asymptotically

converges toward the true probability, if the proposed structure is exact. The bayesian

method rather tries to calculate the most probable parameters given the data, and this

is equivalent, with the Bayes theorem, to weight the parameters with an a priori law.

The most used a priori is the Dirichlet distribution

Many algorithms have been investigated to learn parameter forBNsusing samples of

real databases (cited in [80]. Expectation-Maximization (EM) algorithms is common

algorithm to calculate maximal log likelihood. Lauriten [81] had proved that the algo-

rithm could be applied for parameter learning ofBNS.

3.3 Summary

This first part of this chapter provides an overview of the practical issues that need to be

considered for the implementation and usage of structural health monitoring systems.

The issues are discussed in detail with the help of an example, piezoelectric based

structural health monitoring system. Issues and solutions for integration of sensors

and sensors networks have been presented along with some examples. Two types of

piezoelectric based systems are discussed active and passive sensing systems. Finally,

the intelligent signal processing has been shown as a key element, which builds the

bridge between the sensor signal and the structural integrity interpretation.

The second part of this chapter has shown thatBNshave incredible power to offer as-

sistance in a wide range of endeavors. They support the use of probabilistic inference

to update the probabilities of variables whose state has not been observed given some

set of new observations. They automate this process, allowing reasoning to proceed in

any direction across the network of variables.BNsare powerful tools for knowledge

representation and inference under conditions of uncertainty. In doing so, they support

complex inference modeling including rational decision making systems, value of in-

formation and sensitivity analysis. As such, they are useful for causality analysis and
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through statistical induction they support a form of automated learning. This learning

can involve parametric discovery, network discovery, and causal relationship discov-

ery. Näıve Bayes has a simple structure and a strong independence assumption that all

variables in the network are independent of the classification variable
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CHAPTER 4

The Methodology

4.1 Introduction

The objective of this chapter is to introduce the methodology of this thesis. The

Bayesian networks paly important role in the thesis; their relevant theory is thoroughly

investigated and presented in Chapter3. Aspects of learning the network structures and

the Bayesian network classifiers (the Naı̈ve bayes classifier in particular) are presented

in detail. The methodology used to introduce the Bayesian networks to the community

of damage detection in engineering materials is through testing and evaluating the effi-

ciency of the Näıve bayes classifier for the damage detection. The steps used to do that

are collecting data, introducing a feature extraction algorithm (f -FFE: f-folds feature

extraction), selecting a suitable tool for the classifier, and implementing and evaluating

the extracted features in the classifier. The data sets used are without missing values

and they are assumed to be without any outliers. Thef -FFE method is implemented

on the data set to extract features (form new data set), which believed to minimize the

data set and increase the accuracy of the classifier. The new data set is divided intok

subsets, and the holdout cross validation method is repeatedk times. Each time, one

of thek subsets is used as the test set for the Naı̈ve bayes classifier and the otherk -

1 subsets are put together to form a training set. Then the average accuracy across all

k trials is computed. Thef -FFE algorithm needs the number of clusters and folders

to be specified (this is elaborated later in this chapter). Therefore, it is important to
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run the algorithm many times on the new data set so as to specify the optimum num-

ber of folders and clusters that maximize the accuracy of the classifier. The necessary

processes of the methodology are shown in Figure4.1.

Figure 4.1:The methodology of the damage detection in engineering materials.

4.2 Data Sets

Data collection is a common bottleneck in damage detection. It is very difficult to

create standard data and it is very difficult to create artificial data, which simulate the

damages. Data can be expensive to create, in terms of all types of resources. For

example, the data for damage detection need huge amount of real materials to be used

for creating artificial damages; this needs huge amount of money and time. Therefore,

the limitation of the time and money let two data sets used in the thesis to be collected

from previous works.

The first data set ([7]) created using25 cm× 5 cm rectangular[90/ ± 45/0]s quasi-
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isotropic laminates of the AS4/3501-6 graphite/epoxy system. Three Piezoelectric

Transducer (PZT) patches were mounted on the surface of each specimen. ThePZT

was cut into2 cm× 0.5 cmpatches so that the longitudinal wave would be favored

over the transverse one, and three patches were used on each specimen to actuate and

accurately measure the transmitted and reflected waves. The first channel, which was

served as the trigger for all of the channels, was connected to the output channel and

actuatingPZT, two others were connected to the sensing piezoceramic patches to the

specimen to serve as a control channel in order to zero out drift. A few shapes of piezo-

ceramic patches were used to produce Lamb waves, and as expected waves propagated

parallel to each edge, i.e. longitudinally and transversely for a rectangular patch and

circumferentially from a circular piezo. Various types of damages were introduced

to the specimens including, holes, fiber fracture, matrix cracking, and delamination.

Lamb waves were propagated to the specimens by using15and50 KHzfrequencies.

The second data set is vibration data from a type of ball bearing operating under dif-

ferent fault conditions. The ball bearing is of the type6204with a steel cage. The raw

measurement data took the form of an acceleration signal recorded on the outer casing

for the bearing in five states [91]:

1. New ball bearing (a).

2. Outer race completely broken (b).

3. Broken cage with one loose element (c).

4. Damaged cage, four loose elements (d).

5. No evident damage, badly worn ball bearing (e).

The rotational frequency was24.5625 Hzand a tacho-signal was used for the mea-

surement. The sampling frequency for the time data was16384 Hzand the acquisition

system was aBrüuel andK jaer Spectrum analyzer. The points were recorded in56

instances of2048samples, where11 instances for case1, 9 for case2, 12 for each case
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of 3, 4 and5.

The pre-processing was kept to a minimum. Each signal was divided into overlapping

64-point intervals each offset by eight points from its predecessor. Each set was Fourier

transformed and the magnitude of each spectral line was recorded. This yielded a

sequence of32-component vectors for classification [91].

4.3 f -FFE: f -FOLDS FEATURE EXTRACTION ALGORITHM

In machine learning, the problem of supervised classification is concerned with the

prediction of class labels of the instances in a data set from a finite set of known class

labels. The instances are described by a vector of numeric, nominal features (vari-

ables), or a combination of both. In classification techniques, using many features may

slightly decrease the classifier accuracy and complicates the computational process of

the classification. In addition, as the number of features grows, the number of training

instances required will also grow exponentially. Therefore, in many practical situa-

tions, it is necessary to reduce the dimensionality of the data by decreasing the number

of the features. It has been shown that redundant information can be removed and the

classification result will be more reliable in the reduced subspace. Feature reduction

methods have been widely adopted to reduce input dimension of data with large in-

put variables before implementing the classification techniques. These methods can be

divided into two types, feature selection and extraction. They have wide range of appli-

cations in different types of classifications, such as text classification,DNAmicro-array

data analysis, image recognition, image retrieval, and so on [82, 84, 89].

Consider a data set with a setDn of n features (Dn = {d1, d2, . . . , dn}) :

1. The feature extraction : Can be considered as a mapping ofDn into a new set

of featuresVm = {v1, v2, . . . , vm} (Dn→ Vm), wherem is the number of features

in Vm, andm� n. This approach needs an assumption that all the features are
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relevant for the classification but their number is very big.

2. The feature selection: Can be considered as the selection and identification of

an optimal subset of featuresVm from Dm, wherem is the number of features

in Vm, Vm ⊆ Dm, andm� n. This approach needs an assumption that there are

irrelevant and redundant features available inDm to be removed.

In feature selection, the integrity of the original features is preserved. Although fea-

ture selection keeps the original physical meaning of selected features, it costs a great

degree of time complexity for an exhaustive comparison if a large number of features

is to be selected. The feature selection is anNP-hard problem [84]. In contrast, fea-

ture extraction is considered as a process to generate a new and smaller feature set

by combining the original features. Strictly speaking, feature selection is less flexible

than feature extraction in that feature selection is, in fact, a special case of feature ex-

traction (with a coefficient of one for each selected feature and a coefficient of zero

for any of the other features). This explains why an optimal feature set obtained by

feature selection may or may not yield a good classification result [88]. The feature

selection is problematic, when there is a large number of potential features for classi-

fication and the best method to use depends on the circumstances. Evaluation of the

methods is generally comparative and based on simulations [83]. This thesis focuses

on the feature extraction for the sake of flexibility and effectiveness.

Consider a data setX with C class labels andN instances, whereX = { (xn, wn)} , n = 1,

2, . . . , N, xn ∈ <N, andwn ∈ ω, ω = {1, 2, . . . , C}. The feature extractor in the feature

extraction process requires a mappingf : X → X
′
, whereX is the original feature

space andX
′ ⊆<M (M� N) is the reduced feature space. Subsequently, classification

requires mapping (linear or nonlinear) the instances of the original data set using the

reduced feature space to the class labelsC : X
′ → ω [85].

In the case ofBNs, using many variables increases the size of the network and makes

it very difficult to fill in the CPTs. Consequently, complicates the model and decreases
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its accuracy. Therefore, the feature extraction is an important process for classification

techniques for damage detection inEMsin general and in the case ofBNsin particular.

In this section, thef -Folds Feature Extraction algorithm is introduced. It is a novel

feature extraction method intended to map the amplitudes of waves of anNDT tech-

nique (e.g. ultrasonic) used to detect damages inEMsto new values. These new values

are the mean, maximum, and minimum values of the amplitudes of every instance after

dividing each one into folders, grouping the amplitudes, and implementing a clustering

algorithm on these groups for every instance separately. In the rest of this section first

a preliminary study about the algorithm is discussed then the algorithm is introduced.

4.4 Preliminary Study

The data used for the preliminary study as a base for thef -Folds Feature Extraction

algorithm were collected from Kessler et al [7]. The data were25 cm× 5 cmrectangu-

lar [90/ ± 45/0]s quasi-isotropic laminates of the AS4/3501-6 graphite/epoxy system.

Three Piezoelectric Transducer (PZT) patches were mounted on the surface of each

specimen. ThePZT was cut into2 cm× 0.5 cmpatches so that the longitudinal wave

would be favored over the transverse one, and three patches were used on each spec-

imen to actuate and accurately measure the transmitted and reflected waves. The first

channel, which was served as the trigger for all of the channels, was connected to the

output channel and actuatingPZT, two others were connected to the sensing piezoce-

ramic patches to the specimen to serve as a control channel in order to zero out drift.

A few shapes of piezoceramic patches were used to produce Lamb waves, and as ex-

pected waves propagated parallel to each edge, i.e. longitudinally and transversely for

a rectangular patch and circumferentially from a circular piezo. Various types of dam-

ages were introduced to the specimens including, holes, fiber fracture, matrix cracking,

and delamination. Lamb waves were propagated to the specimens by using15 and50

KHz frequencies.
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The amplitudes of these data were collected by using a constant interval of time (mi-

croseconds). A different data set might be acquired, if the interval value had been

changed. If it had been assumed that the interval was increased10 times more than the

original one, then the original amplitudes would be divided into60 folders (10 ampli-

tudes in each fold). In this case10 different data sets would be formed each with60

amplitudes. The amplitudes included in each set depend on the first amplitude selected

from the first folder. If the first amplitude in folder number one was the first to be

included, then the first amplitudes in the other folders would be included to the data

set. If the second one was the first one to be included, then the second ones in all other

folders would be included in the data set, etc.

(a) (b)

(c) (d)

(e) (f)

Figure 4.2:The similarity of wave shapes of the data sets using10 folders.

Every instance of the data sets was divided into a different number off folders (3≤ f ≤
10) and subsets of data were created from these folders for every data set as mentioned

above. When the graphs of the subsets of every data set were plotted, there were many

subsets that have shown similar shape of graphs as depicted in Figure4.2(many figures
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have been shown in Appendix A). This gives an indication that the subsets of the data

set can be divided into clusters, from which the mean, maximum, and minimum values

of these clusters can be used as representatives to these clusters for damage detection.

This has been used as a base to formalize thek-Folds Feature Extraction Algorithm

shown bellow (Algorithm1 and Figure4.5).

4.5 f -Folds Feature Extraction Algorithm

Algorithm 1 k-Folds Feature Extraction Algorithm

Input:
Amps= amp1, amp2, . . . , ampn (Amplitudes to be clustered).
k (number of clusters),f (number of folders).

Outputs:
Means= {m(c1), m(c2), . . . , m(ck)}
Maxs= {max(c1), max(c2), . . . , max(ck)}
Mins = {min(c1), min(c2), . . . , min(ck)}

procedure Clustering
1. DivideAmpsinto f folders (f old(1), f old(2), . . . , f old( f )), where
| f old(1)| = | f old(2)| = . . . = | f old( f )|, f old(i) = { f old( j)1, f old( j)2, . . .
f old( j)m}, m = n / f , and1 ≤ j ≤ f .
2. Create a new data setNewAmp= nAmp(1), nAmp(2), . . . , nAmp(m),
where∀A = f old(k)i ,A ∈ nAmp(i),1 ≤ i ≤ m,and 1 ≤ k ≤ f
(the number of elements in each fold is m = n/ f).
3. Implement a clustering algorithm (e.g. k-means) on NewAmp, to return k clusters.
4. Return the mean, maximum, and minumum values of the clusters.

The input to thef -Folds Feature Extraction Algorithm (Algorithm1 is a set ofn am-

plitudes (Amps= amp1, amp2, . . . , ampn). In step1 the algorithm divides the data set

into f folders. All folders contain the same number ofm amplitudes, wherem = n /

f. In step2 the algorithm forms a new set of data containingm records by assigning

the amplitudes with the same index in all folders to the data set as one record (e.g. the

first amplitudes in all folders form the first record and so on). This creates the data

setNewAmp(nAmp(1), nAmp(2), . . . , nAmp(m)). The number of variables in each

record isf (the number of folders). In step3 the algorithm implements a clustering

algorithm (e.g. k-means algorithm [86, 87]) on NewAmpto divide their instances into
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k clusters. Since each record hasf variables, the algorithm returnsf mean values,f

maximum values, andf minimum values of each cluster. These values will be consid-

ered as representatives to the clusters and when combined together they can replace the

original data set. For example, if there are100instances in the cluster, only3 instances

are used (means, maximums, and minimums). The total number of the variables (t)

in each damage type will be reduced to3 × f × k, when the means, maximums, and

minimums of the clusters are considered. Finally, it will be reduced tof × k, if only the

means are considered. The values off andk must be determined by the user such that

t � n, which believed to decrease the number of variables to a minimum that highly

increase the accuracy of the model and simplify it.

Figure 4.3:Thek-Folds Feature Extraction algorithm.

4.6 Summary

Feature reduction methods have been widely adopted to reduce input dimension of data

with large input variables before implementing the classification techniques. These

methods can be divided into two types, feature selection and extraction. In feature
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selection, the integrity of the original features is preserved. In contrast, feature extrac-

tion is considered as a process to generate a new and smaller feature set by combining

the original features. Strictly speaking, feature selection is less flexible than feature

extraction in that feature selection is, in fact, a special case of feature extraction. This

thesis focuses on the feature extraction for the sake of flexibility and effectiveness.

In this section, thef -Folds Feature Extraction algorithm was introduced. Thef -Folds

Feature Extraction algorithm is a novel method intended to map the amplitudes of

waves of anNDT technique (e.g. ultrasonic) used to detect damages inEMs to new

values. These new values are the mean, maximum, and minimum values of the ampli-

tudes of every instance after dividing each one into folders, grouping the amplitudes,

and implementing a clustering algorithm on these groups for every instance separately.
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CHAPTER 5

IMPLEMENTATION AND TESTING

5.1 Introduction

The intention of this chapter is to demonstrate the potential of Naı̈ve bayes classifier

for damage detection in engineering materials, implement thef -FFE algorithm, and

test and show its results using different number of folders and clusters. Thef -FFE

algorithm extracted features from a set of vibration data from a type of ball-bearing

data operating under different fault conditions. The Naı̈ve bayes classifier used in

this study was implemented in the open-source machine learning package Weka. This

thesis assumes that appropriate data preprocessing has been performed on the data

set used. Sincek-means algorithm can handle continues features, there is no need to

discretize any of the features. It was important for the sake of the algorithm to divide

the data into folders, extract subsets of data from these folders, implement a clustering

algorithm on these sets, and calculate the mean, maximum, minimum values of the

clusters. Since these potentials were not offered by the Weka tool, two programs were

written in Java to fill this gap.

Weka is a collection of machine learning algorithms for data mining tasks. The algo-

rithms can either be applied directly to a data set or called from a separately written

Java code. Weka contains tools for data pre-processing, classification, regression, clus-

tering, association rules, and visualization. It is also well-suited for developing new

machine learning schemes [90]).
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In this section, first the Ball-bearing data set is discussed. Second, the implementa-

tion of the f -FFE algorithm using the two Java programs are illusterated. Third, the

implementation of the Naı̈ve bayes classifier on the features extracted by thef -FFE

algorithm is discussed. Lastly, an evaluation has been done.

5.2 Implementation

The first Java program (shown in Appendix B1) written implements step1 and2 of

the f -FFE algorithm. Every instance in the data set was divided by the program into

different number of folders (4, 6, 8, 10, and12). As mentioned before, the number of

the samples in every instance was2048. Therefore, when the number of the folders

was4 the samples of every instance were divided into512subsets, when the number

of folders was8, the number of the subsets was256, and so on. The steps of creating

these subsets are mentioned in Algorithm1. The program automatically writes the data

into Weka format. Thek-means clustering algorithm was implemented separately on

every group of subsets of all instances with different number of clusters ranging from

two to eight. The subsets for every instance were saved in seven separate files, every

file represents the clustering results of the different number of clusters (2, 3, 4, 5, 6,

and7).

The second Java program (shown in Appendix B2) implements step3 of the f -FFE

algorithm. This program implemented on all files created by the first program. This

program creates the mean, maximum, and minimum values of the clusters. For ex-

ample, if the number of the folders was four and the number of clusters was two, the

number of subsets would be512and the number of samples in every subset would be

four. This can be shown in a table of size512× 4 (rows× columns). After imple-

menting thek-means algorithm on this table, every row in this table would be assigned

a cluster label of0 or 1. That means this table would be grouped in to two parts.

Every part would be represented by the mean , maximum, and minimum values of
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the four columns. The total number of the features (samples) of every instance in this

case would be reduced to24 samples (3 × 4 × 2). Table5.1shows the number of the

reduced features for all numbers of folders and clusters tested in this thesis.

Table 5.1:The number of reduced features for all features.
Number of Folders Number of Clusters⇒

⇓ 2 3 4 5 6 7 8
4 24 36 48 60 72 84 96
6 36 54 72 90 108 126 144
8 48 72 96 120 144 168 172
10 60 90 120 150 180 210 240
12 72 108 144 180 216 252 288

Table5.2 shows the number of the reduced features when using the combination of

mean and maximum features.

Table 5.2:The number of reduced features for mean and maximum
Number of Folders Number of Clusters⇒

⇓ 2 3 4 5 6 7 8
4 16 24 32 40 48 56 86
6 24 36 48 60 72 84 96
8 32 48 64 80 96 102 128
10 40 60 80 100 120 140 160
12 48 72 96 120 144 168 192

The the N̈ıave bayes classifier was implemented on the files created by the second

program mentioned above. Labeling the instances in these files involve applying a

previously learned classifier to an unlabeled data set to predict instance labels. Testing

takes a labeled data set, temporarily removes class labels, applies the classifier, and

then analysis the quality of the classification algorithm by comparing the actual and

the predicted labels. Thek-fold cross validation was used, which partitions the data

set intok folds, and performsk training and testing iterations. On each iteration, one

fold is used as a test set, and the rest of the data is used as a training set. The classifier

is learned on the training set and then validated on the test data. The number of folds

used in this thesis was10. The classifier was implemented on every file separately and

the results were records. The10 results from the folds for each file were combined to
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produce single estimation.

5.3 Testing

It has been assumed that the maximum features represent the peaks of the amplitudes.

It was decided to test the efficiency of the mean, maximum, and minimum features of

the clusters together, separately, and in combination. The classifier was firstly tested

using the mean, maximum, and minimum features, secondly using the mean and max-

imum features, thirdly using the mean features only, and lastly using the maximum

features only. The percentages of the correctly classified instances together with the

confusion matrices for the classification result for each case were recorded.

Table5.3 shows the confusion matrix of the classification result for4 folders and2

clusters, when using the mean, maximum, and minimum features. In the table, the

number of correctly classified instances is51out of56 (91.0714%).

Table 5.3:Confusion matrix for all features (4 folders and2 clusters).
Correctly classified 51 (91.0714%)

a b c d e ← classified as
11 0 0 0 0 a
0 6 3 0 0 b
0 0 11 1 0 c
0 0 0 11 1 d
0 0 0 0 12 e

Table5.4 shows the confusion matrix of the classification result for4 folders and2

clusters, when using the mean and maximum features. In the table, the number of

correctly classified instances is51(91.0714%). The results of this table is similar to the

previous one. The removal of the minimum features does not change the classification

accuracy.

Table5.5 shows the confusion matrix of the classification result for4 folders and2

clusters, when using the mean features only. In the table, the number of correctly
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Table 5.4:Confusion matrix for combination features (4 folders and2 clusters).
Correctly classified51 (91.0714%)

a b c d e ← classified as
11 0 0 0 0 a
0 6 3 0 0 b
0 0 11 1 0 c
0 0 0 11 1 d
0 0 0 0 12 e

classified instances is47 (83.9286%). The classification accuracy is still higher but

decreased.

Table 5.5:Confusion matrix for mean features only(4 folders and2 clusters).
Correctly classified47 (83.9286%)

a b c d e ← classified as
10 1 0 0 0 a
3 4 2 0 0 b
0 1 10 1 0 c
0 0 0 11 1 d
0 0 0 0 12 e

Table5.6 shows the confusion matrix of the classification result for4 folders and2

clusters, when using the maximum features only. In the table, the number of correctly

classified instances is27 (48.2143%). The classification accuracy is highly decreased

when using only the maximum features.

Table 5.6:Confusion matrix for maximum features only(4 folders and2 clusters).
Correctly classified27 (48.2143%)
a b c d e ← classified as
11 0 0 0 0 a
0 6 3 0 0 b
0 0 8 4 0 c
0 0 10 2 0 d
0 0 10 2 0 e

The percentages of correctly classified instances and the confusion matrices concern-

ing the rest of the other different number of folders and clusters used in this thesis are

shown in Appendix C.
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5.4 Summary

The Näıve bayes classifier together with the proposedf -FFE algorithm have shown

great potential, when tested on a set of vibration data from a type of ball bearing oper-

ating under different fault conditions, new ball bearing, outer race completely broken,

broken cage with one loose element, damaged cage, four loose elements, no evident

damage, and badly worn ball bearing. The features extracted by the algorithm contain,

the mean, maximum, and minimum features of the clusters. The implementation has

been done using different number of folders and clusters.
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CHAPTER 6

RESULTS AND DISCUSSIONS

6.1 Introduction

This section evaluates the results of Nı̈ave bayes classifier and thef -FFE algorithm,

when implemented using different number of folders and clusters. The first purpose

of the evaluation is to compare the classification accuracies based on folders for all

number of clusters considered in this thesis and to specify the number of clusters that

give the best results. The second purpose of the evaluation is to compare the classifi-

cation accuracies based on clusters for all number of folders considered in this thesis

and to specify the number of folders that give the best classification accuracies. The

third purpose is to determine the features that give the best results.

6.2 Comparison of Results Based on Folders

Figure6.1shows the classification accuracies of the classifier for all number of clusters

when the number of folders was4.

It is quite obvious from the graph that the classification accuracies are very low in the

case of maximum features. The average accuracy approximately is50%. The clas-

sification accuracies for the classifier show similar trend when using the all features,

the combination of the mean and maximum features, and the mean features. In these

cases, all accuracies are above80%. The best results are obtained when the combi-
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Figure 6.1:Comparison of classification accuracies (4 folders)

nation of the mean and maximum features are used and all accuracies are more than

90%. In general, when the mean features are used, their accuracies are less than the

accuracies of all features and the combination of the mean and maximum features. In

the case of the all features and the combination of mean and maximum features, the

results are similar to each other in4 clusters. The increase of the accuracies when the

number of clusters are greater than4 (approximately95%) are not high and can be ig-

nored. Therefore, in this figure, the 4 clusters can be considered the optimum number

of clusters to give the best results.

Figure6.2shows the classification accuracies of the classifier for all number of clusters

when the number of folders is6.

As can be seen from Figure6.1, the classification accuracies for the maximum features

are very low when compared to the other cases but higher than the same case for the

previous graph. In some cases they have reached more than75%. The classification

accuracies in the rest of cases are greater than90%and they show results, which can

be considered similar to each other. The accuracies of the all features are similar to

that of the combination of mean and maximum features when the number of clusters

is greater than2 and less than8, but they are a bit less when the number of clusters is2

and increases when the number of clusters is8. The figure gives an indication that the
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Figure 6.2:Comparison of classification accuracies (6 folders).

decrease will be very high when the number of clusters gets bigger than8 clusters. It

can be concluded from this figure that the best results can obtained when the number

of clusters is4.

Figure6.3shows the accuracies for all number of clusters when the number of folders

is 8.
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Figure 6.3:Comparison of classification accuracies (8 folders)

In this figure, the accuracies are still low for the maximum features, but generally have

shown an improvement when compared to the previous cases. All of the accuracies

are greater than75%except in the2 clusters. The accuracies of the other cases do not

show big variations among each other. Nevertheless, in all cases, the accuracies of the
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combination of mean and maximum features are the best. All accuracies in these cases

are greater then90%. The highest accuracies are shown when the number of clusters

is equal to4 and greater than5. Therefore, the best results can be considered for the4

clusters.

Figure6.4shows the classification accuracies for all number of clusters when the num-

ber of folders is10.
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Figure 6.4:Comparison of classification accuracies (10 folders)

In this figure the accuracies for the maximum features are very low when compared to

the previous cases. The accuracies of the other cases are greater than90% and they

are equal when the number of clusters are greater than4 and less than8. Generally,

the combination of mean and maximum features show better accuracies than the others

when the number of the clusters is8. In this graph it can also be accepted that the4

clusters give the optimum accuracies.

Figure6.5shows the classification accuracies for all number of clusters when the num-

ber of folders is12.

As in the previous figures the accuracies are still low for the maximum features, even

though, the accuracy is greater than80% in 7 clusters. The accuracies in the other

cases are greater than90%and in general the accuracies of the combination of mean

and maximum features are showing better results than the others. The accuracies of
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Figure 6.5:Comparison of classification accuracies (12 folders)

all features are better than the mean features, except when the number of clusters is5,

where they are equal.

The experimental results of comparing the classification accuracies based on folders

illustrate that the best accuracies can be obtained when using the combination of mean

and maximum features with4 clusters.

6.3 Comparison of Results Based on Clusters

Figure6.6shows the classification accuracies for all number of folders when the num-

ber of clusters was2.
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Figure 6.6:Comparison of classification accuracies (2 clusters)
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In this figures, the accuracies of the maximum features are very low when compared

to the other cases. This case will repeat for the figures shown below. In the other cases

the accuracies some how are similar to each other. The best accuracy is obtained when

the number of folders is6. It is very obvious from the figure that when the number of

folders is greater than6, the accuracy does not show any considerable change. There-

fore, the6 folders can be considered as the most convenient number of folders in case

of 2 clusters.

Figure6.7shows the classification accuracies for all number of folders when the num-

ber of clusters was3.
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Figure 6.7:Comparison of classification accuracies (3 clusters).

In this figures, the combination of mean and maximum features have shown the highest

accuracy when the number of folders is10, but in the rest of the folder numbers, the

combination of the mean and maximum features have shown higher accuracy than the

mean features. It has also shown greater accuracy than all features except when the

number of folders is6 an 8, which they show equal accuracies. Nevertheless, it is

acceptable by scrutinizing the figure to consider the best accuracies where given when

the number of folders is6.

Figure6.8shows the classification accuracies for all number of folders when the num-

ber of clusters was4.
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Figure 6.8:Comparison of classification accuracies (4 clusters)

In this figure, the combination of the mean and maximum features have shown similar-

ity of accuracies to all features in all number of clusters. Most of these features have

shown accuracies greater than95%. The mean features have shown less accuracies

than the all and the combination of mean and maximum features, just at the 10 folders

they have shown similar accuracy. It possible to consider the number of the folders that

gives the best accuracies is6, because the change of the accuracies when the number

of folders is greater than 6 is considerably not tremendous.

Figure6.9shows the classification accuracies for all number of folders when the num-

ber of clusters was5.
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Figure 6.9:Comparison of classification accuracies (5 clusters)
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Figure 6.10 shows the classification accuracies for all number of folders when the

number of clusters was6.

 40

 60

 80

 100

 120

 12 10 8 6 4

C
la

ss
if

ic
at

io
n 

A
cc

ur
ac

y 
(%

)

Number of Folders

All Features
Mean and Maximum Features

Mean Features
Maximum Features

Figure 6.10:Comparison of classification accuracies (6 clusters)

In this figure, most of the accuracies are greater than60%and the highest accuracies

are recorded when the number of folders is6 and8, which are greater than75%. Still

they are lower than other features. The accuracies of the all features and combination

of mean and maximum features have shown similar trend. The highest accuracies are

recorded when the number of the folders is8, but still not so great than other accuracies.

The accuracies of the mean features are lower than the all and combination of mean

and maximum features, except in10 folders, where the accuracies are similar.

Figure 6.11 shows the classification accuracies for all number of folders when the

number of clusters was7.

In this figure, the accuracies of the maximum features show diversity, the accuracy of

12features is greater than80%, greater than50%for 4 folders, and less than50%for 10

folders. Nevertheless, they still low when compared to other features. The accuracies

of the other features are quite similar to each other and all of them are greater than

90%. The highest accuracies are recorded for the mean and combination of mean and

maximum features when the number of features is8, but they still not that so much

greater than that when the number of folders is6.
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Figure 6.11:Comparison of classification accuracies (7 clusters)

Figure 6.12 shows the classification accuracies for all number of folders when the

number of clusters was8.
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Figure 6.12:Comparison of classification accuracies (8 clusters)

In this figure, all accuracies of the maximum features are between50%and85%, but

still less than the accuracies of other features. The accuracies of other features are

very similar to each other and the differences can be ignored. The accuracies of these

features are very close to100%when the number of the folders is4 and the accuracies

in general are slightly decreasing when the number of the folders are increasing.

The experimental results of comparing the classification accuracies based on clusters

show that the best accuracies can be obtained when using the combination of mean and
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maximum features with6 folders. It can also be concluded that using greater number

of folders requires fewer number of clusters to obtain higher accuracy.

6.4 Summary

The experimental results conducted in this section have shown the efficiency of the

Näıve bayes classifier and the e-FFE algorithm for damage detection inEMs. In many

cases, the accuracies of the classifier using the features extracted by the algorithm have

reached values greater than95%. The best classification accuracies were obtained

when the combination of mean and maximum features with6 folders and4 clusters

were used. In this case the number of the features will be decreased for each instance

from 2048 to 48 (this can be checked from Table5.2). It has also shown that using

the maximum features alone for classification will highly decrease the accuracy of the

classifier but the mean features alone have shown very good accuracies when compared

to the maximum feature, but a less better than the combination of mean and maximum.
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CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

The main objective of this thesis is to introduce the Bayesian networks for the commu-

nity of damage detection in engineering materials. The methodology used to satisfy

that is to introduce a feature extraction algorithm (thef -FFE: f -folds feature extraction

algorithm) so as to extract features from input data, which maximize the classification

accuracy, and implement the Naı̈ve bayes classifier on these features. Two data sets

are used as part of the methodology. The first set represents voltage amplitudes of

Lamb-waves produced and collected from quasi-isotropic laminates. The second set is

a vibration data from a type of ball bearing operating under different five fault condi-

tions. The ball bearing is of the type6204with a steel cage. The raw measurement data

took the form of an acceleration signal recorded on the outer casing for the bearing in

five states. The main contributions of this thesis can be summarized as follows:

• The Bayesian networks have been widely implemented as classifiers in many

disciplines such as gene regulatory networks, medical diagnostic systems, text

analysis, and image processing. However, to the author’s knowledge, they have

not been explored in damage detection in engineering materials. The thesis has

shown that the Bayesian networks in general and the Naı̈ve bayes classifiers in

particular are competitive classifiers to other machine learning classifiers that

are implemented for the damage detection (e.g. Neural networks, and genetic
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algorithms).

• To the knowledge of the author, most of the feature reduction algorithms used

in the damage detection are based on feature selection algorithms. However, the

feature extraction has not been implemented for damage detection in engineering

materials. The proposedf -folds feature extraction algorithm has shown good

efficiency in damage detection, specially when compared to the techniques that

are based on the peaks of the waves of amplitudes.

• The proposed algorithm has been tested with different number of folders and

clusters. The best results obtained when the number of clusters is four, the num-

ber of folders is six, and the combination of mean and maximum values has been

used. The highest accuracy of the classifier obtained exceeds95%. It has been

shown that the maximum values only (the peaks) have shown the worst classifi-

cation results in comparison to other cases and the mean values have show good

results, which can be compared to the combination of the maximum and mean

values. The number of the features extracted is highly decreased to48, while the

original data contain2048amplitudes.

• Most of the techniques used for the feature reduction in the damage detection

are borrowed and implemented from other techniques, the thesis has shown that

some techniques can be developed based on the damage detection, which can be

efficient when compared to other techniques.

The present thesis demonstrates the efficiency and applicability of Bayesian networks

as classifiers for damage detection in engineering materials. It is concluded that Bayesian

networks as classifiers have indeed offer many advantages for the damage detection in

engineering materials.
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7.2 Recommendations for Future Work

Thus the methodology has many advantages for the community of damage detection

in engineering materials. However, from an overall point of view, the whole processes

and works presented in this thesis can be extended by purely theoretical development,

by use of the models in large real-world applications, or by implementing advanced

specialized algorithms applied in existing software tools.

The limitation of data resources have forced the research to be limited only to two

sets of data. The complexity of the damage detection may grow beyond tractability,

and a need for more, huge, and different types of data to generalize the results of the

Bayesian network classifiers is apparent.

Nevertheless, the performance of the Naı̈ve bayes classifiers has been proven surpris-

ingly to be successful and competitive to many classifiers in many disciplines, it is

important to compare it in the damage detection to the performance of other types of

Bayesian network classifiers, e.g. tree augmented Naı̈ve bayes classifiers, selective

unrestricted Bayesian network classifiers, or any other Bayesian classifiers discovered

by a structure learning algorithm.

The proposedf -FFE algorithm needs the number of folders and clusters pre-specified,

it can be extended by adding techniques to automatically determined the optimum

number of clusters and folders that maximize the classification accuracies.
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APPENDICES

Appendix A

Graphs Used as Preliminary Study for thef -FFE Algorithm

The figures represent the data of the waves collected from the laminates with bend after
dividing them into five folders.
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The figures represent the data of the waves collected from the laminates with bend after
dividing them into ten folders.

The figures represent the data of the waves collected from the laminates with bend after
dividing them into twenty folders.
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Appendix B1

The Java Source Code off -FFE Algorithm

This section contains the source code of the program, which divides the amplitudes of
every reading into folders then select the amplitudes with the same index in all folders
and assign them as one record of a database.

import java.io. * ;
import java.util.StringTokenizer;
public class
create_Folders{

public static void main(String[] args) throws
IOException {
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//Number of folders
int NumberOfFolds = 8;
//Open all files in the directory.
String FDir = "C:\\PhD_Work\\Data\\Sheffield\\";

//Get the names of all files in the directory.
File dir = new File(FDir + "ball_bearing\\");
String[] children = dir.list();

//Create folders from 4 to 16.
for (int f = 2; f < 7; f++) {

NumberOfFolds = f * 2;
convert_File_Folds convert_FFolds = new
convert_File_Folds(
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NumberOfFolds );
convert_FFolds.setFileDirectory (FDir);
convert_FFolds.setNoFols(NumberOfFolds);

if (children == null) {
// Either dir does not exist or is not a
//directory
System.out.println("Either dir does not
exist or is not a directory...");

} else {
//Get the names of the file one by one.
for (int k = 0; k < children.length; k++) {

//Set the new name of the file.
convert_FFolds.setFileName(children[k]);
//Open the output file for writting new data.
convert_FFolds.setFOPStream();
//Open the input file to read data.
convert_FFolds.setBReader();
//Convert the data by dividing them into folders.
convert_FFolds.transferData();

}
}

}
}

}

class convert_File_Folds{
private BufferedReader input = null;
private String FileDirectory, FileName, txt_token, line;
private int NoFolds, NoOfRecords;
private FileOutputStream fos;
private DataOutputStream outData;
private double[][] ConvertedData;
final int NoAmplitudes = 2048;

//Contstruct convert_File_Folds with default file name.
convert_File_Folds () {

this.FileDirectory =
"C:\\PhD_Work\\Data\\Sheffield\\ball_bearing\\";
this.FileName = "l1_1.txt";
this.NoFolds = 4;
this.NoOfRecords = NoAmplitudes / NoFolds;

}

//Contstruct convert_File_Folds with specified file naem.
convert_File_Folds (int NFolds) {

this.NoFolds = NFolds;
this.NoOfRecords = NoAmplitudes / NoFolds;

}
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public void setFileDirectory (String FD){
FileDirectory = FD;

}

public void setFileName (String FN){
FileName = FN;
System.out.println("The File Name : " + FileName);

}

public void setNoFols (int NF){
NoFolds = NF;

}

public void setFOPStream (){
String txt;
try {

txt = FileName.substring(0, FileName.length() - 4);
fos = new FileOutputStream( FileDirectory +
"folders_" + NoFolds + "\\" + txt + ".ARFF");
outData = new DataOutputStream(fos);

} catch (FileNotFoundException ex) {
System.out.println("Error in output file");
ex.printStackTrace();

} catch (IOException ex){
System.out.println("Error in output file");
ex.printStackTrace();

}
}

public void setBReader (){
try {

input = new BufferedReader( new FileReader
(FileDirectory + "ball_bearing\\" + FileName) );

} catch (FileNotFoundException ex) {
System.out.println("Error in input file");
ex.printStackTrace();

} catch (IOException ex){
System.out.println("Error in input file");
ex.printStackTrace();

}
}

public void transferData (){
String tempStr;
ConvertedData = new double [NoOfRecords][NoFolds];
System.out.println("Number of Folders : " + NoFolds);
System.out.println("Number of Records : " + NoOfRecords);
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//Organize the data into a matrix.
try {

for (int i = 0; i < NoFolds; i++){
for (int j = 0; j < NoOfRecords; j++){

line = input.readLine();
ConvertedData [j][i] = Double.parseDouble(line);

}
}

//Add the Weka headings.
tempStr = "@relation " + FileName.substring(0,
FileName.length() - 4) + "\n\n";
outData.write(tempStr.getBytes());
for (int i = 1; i <= NoFolds; i++){

tempStr = "@attribute AMPLITUDE" + i +
" numeric" + "\n";
outData.write(tempStr.getBytes());

}
tempStr = "\n";
outData.write(tempStr.getBytes());
tempStr = "@data\n";
outData.write(tempStr.getBytes());

//Read the matrix
for (int i = 0; i < NoOfRecords; i++){

tempStr = Double.toString(ConvertedData [i][0]);
for (int j = 1; j < NoFolds; j++){

tempStr = tempStr + "," + Double.toString(
ConvertedData [i][j]);

}
tempStr = tempStr + "\n";
outData.write(tempStr.getBytes());

}
} catch (Exception e) {

System.out.println("Something went wrong: " +
e.toString());

}
}

}
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Appendix B2

The Java Source Code of the Second Program off -FFE Algorithm

This section contains the source code of the program that calculates the mean, max-
imum, and minimum values of the clusters for each case and combine them to for a
new feature.

import java.io. * ; import java.util.StringTokenizer;
importjava.text.NumberFormat;

public class kmeans_CentroidMaxMinARFF{
public static void main(String[] args) throws IOException {
final int Fold_No = 8, Clust_No = 8;

FileOutputStream fos = new FileOutputStream(
"C:\\PhD_Work\\Sheffield\\folders_" + Fold_No +
"\\centroids_maxmin_" + Fold_No + "_" + Clust_No
+ ".ARFF");

DataOutputStream outData = new DataOutputStream(fos);
BufferedReader input = null;
String txt_token = null;
double[][] clusterAmpTotals = new double[Clust_No][Fold_No];
double[][] clusterMax = new double[Clust_No][Fold_No];
double[][] clusterMin = new double[Clust_No][Fold_No];
int[] clusterCount = new int[Clust_No];
double[] instanceAmplitudes = new double[Fold_No];
int indx = 0;
String txt = null;
String line = null;

NumberFormat nf = NumberFormat.getInstance();

for (int i = 0; i < Clust_No; i++){
clusterCount[i] = 0;
for (int j = 0; j < Fold_No; j++){

clusterAmpTotals[i][j] = 0.0000;
clusterMax[i][j] = 0.0000;
clusterMin[i][j] = 0.0000;

}
}

String txt_all;
double total = 0;
int c = Fold_No * Clust_No;
//Write the headings of the ARFF file.
txt_all = "@relation MeanMaxMin" + Fold_No + "_"
+ Clust_No + "\n\n";
outData.write(txt_all.getBytes());
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for (int i = 1; i <= c; i++){
txt_all = "@attribute AMP_MEAN" + i + " numeric \n";
outData.write(txt_all.getBytes());
txt_all = "@attribute AMP_MAX" + i + " numeric \n";
outData.write(txt_all.getBytes());
txt_all = "@attribute AMP_MIN" + i + " numeric \n";
outData.write(txt_all.getBytes());

}

txt_all = "@attribute DAMAGE {l1, l2, l3, l4, l5}\n";
outData.write(txt_all.getBytes());
txt_all = "\n@data\n";
outData.write(txt_all.getBytes());

//Open all files in the directory.
File dir = new File("C:\\PhD_Work\\Sheffield\\folders_"
+ Fold_No + "\\clusters_" + Clust_No);
String[] children = dir.list();

if (children == null) {
// Either dir does not exist or is not a directory
System.out.println("Either dir does not exist or
is not a directory...");

} else {
//double str_double = 0;

try {
for (int k = 0; k < children.length; k++) {

String filename = children[k];
System.out.println(filename);

StringBuffer contents = new StringBuffer();
String aFile = "C:\\PhD_Work\\Sheffield\\folders_"
+ Fold_No + "\\clusters_" + Clust_No + "\\" + filename;
input = new BufferedReader( new FileReader(aFile) );

//This readLine let the ARFF headings to be ignored.
for (int i = 1; i <= Fold_No + 6; i++)

line = input.readLine();

while (( line = input.readLine()) != null){
StringTokenizer st = new StringTokenizer(line, ",");
txt_token = st.nextToken();
for (int i = 0; i < Fold_No; i++){
txt_token = st.nextToken();
//instanceAmplitudes[i] = Double.parseDouble(txt_token);
instanceAmplitudes[i] =
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Double.valueOf(txt_token.trim()).doubleValue();
}

txt_token = st.nextToken();
txt = String.valueOf(txt_token.charAt(7));
indx = Integer.valueOf(txt).intValue();
clusterCount[indx]++;
for (int i = 0; i < Fold_No; i++){

clusterAmpTotals[indx][i] += instanceAmplitudes[i];

if (clusterCount[indx] == 1){
clusterMax[indx][i] = instanceAmplitudes[i];
clusterMin[indx][i] = instanceAmplitudes[i];

}
else{

if (instanceAmplitudes[i] > clusterMax[indx][i])
clusterMax[indx][i] = instanceAmplitudes[i];
if (instanceAmplitudes[i] < clusterMin[indx][i])

clusterMin[indx][i] = instanceAmplitudes[i];
}

}
}
txt_all = "";

for (int i = 0; i < Clust_No; i++){
for (int j = 0; j < Fold_No; j++){

txt_all += nf.format(clusterAmpTotals[i][j] /
clusterCount[i]) + ",";
txt_all += nf.format(clusterMax[i][j]) + ",";
txt_all += nf.format(clusterMin[i][j]) + ",";

}
}

txt_all += "l" + String.valueOf(filename.charAt(1))
+ "\n";

outData.write(txt_all.getBytes());

}
outData.close();
}
catch (FileNotFoundException ex) {

ex.printStackTrace();
}
catch (IOException ex){

ex.printStackTrace();
}
finally {

try {
if (input!= null) {
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//flush and close both "input" and its
// underlying FileReader
input.close();

}
}
catch (IOException ex) {

ex.printStackTrace();
}

}}}}
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Appendix C

The Classifier Accuracies and the Confusion Matrices

The appendix shows the classifier accuracies and the confusion matrices of the in-
stances grouped by folder and cluster numbers.

Number of Folders 4
Number of Clusters 2
Mean, Maximum, and Minimum Mean and Maximum
Correctly classified 51 (91.0714%) Correctly classified 51 (91.0714%)
a b c d e ← class. as a b c d e ← class. as

11 0 0 0 0 a 11 0 0 0 0 a
0 6 3 0 0 b 0 6 3 0 0 b
0 0 11 1 0 c 0 0 11 1 0 c
0 0 0 11 1 d 0 0 0 11 1 d
0 0 0 0 12 e 0 0 0 0 12 e
Mean values only Maximum values only
Correctly classified 47 (83.9286%) Correctly classified 27 (48.2143%)
a b c d e ← class. as a b c d e ← class. as

10 1 0 0 0 a 11 0 0 0 0 a
3 4 2 0 0 b 0 6 3 0 0 b
0 1 10 1 0 c 0 0 8 4 0 c
0 0 0 11 1 d 0 0 10 2 0 d
0 0 0 0 12 e 0 0 10 2 0 e
Number of Clusters 3
Mean, Maximum, and Minimum Mean and Maximum
Correctly classified 51 (91.0714%) Correctly classified 52 (92.8571%)
a b c d e ← class. as a b c d e ← class. as

11 0 0 0 0 a 11 0 0 0 0 a
0 7 2 0 0 b 0 8 1 0 0 b
0 0 11 1 0 c 0 0 11 1 0 c
0 0 1 11 0 d 0 0 1 11 0 d
0 0 0 1 11 e 0 0 0 1 11 e
Mean values only Maximum values only
Correctly classified 51 (91.0714%) Correctly classified 28 (50%)
a b c d e ← class. as a b c d e ← class.as

10 1 0 0 0 a 11 0 0 0 0 a
0 9 0 0 0 b 0 7 2 0 0 b
0 1 10 1 0 c 0 0 8 4 0 c
0 0 1 11 0 d 0 0 10 2 0 d
0 0 0 1 11 e 0 0 10 2 0 e
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Number of Clusters 4
Mean, Maximum, and Minimum Mean and Maximum
Correctly classified 53 (94.6429%) Correctly classified 53 (94.6429%)
a b c d e ← class. as a b c d e ← class. as

11 0 0 0 0 a 11 0 0 0 0 a
0 8 1 0 0 b 0 8 1 0 0 b
0 0 10 2 0 c 0 0 10 2 0 c
0 0 0 12 0 d 0 0 0 12 0 d
0 0 0 0 12 e 0 0 0 0 12 e
Mean values only Maximum values only
Correctly classified 50 (89.2857%) Correctly classified 50 (89.2857%)
a b c d e ← class. as a b c d e ← class. as
9 2 0 0 0 a 9 2 0 0 0 a
1 8 0 0 0 b 1 8 0 0 0 b
0 1 9 2 0 c 0 1 9 2 0 c
0 0 0 12 0 d 0 0 0 12 0 d
0 0 0 0 12 e 0 0 0 0 12 e
Number of Clusters 5
Mean, Maximum, and Minimum Mean and Maximum
Correctly classified 52 (92.8571%) Correctly classified 52 (92.8571%)
a b c d e ← class. as a b c d e ← class. as

11 0 0 0 0 a 11 0 0 0 0 a
0 7 2 0 0 b 0 7 2 0 0 b
0 0 11 1 0 c 0 0 11 1 0 c
0 0 1 11 0 d 0 0 1 11 0 d
0 0 0 0 12 e 0 0 0 0 12 e
Mean values only Maximum values only
Correctly classified 51 (91.0714%) Correctly classified 28 (50%)
a b c d e ← class. as a b c d e ← class. as

10 1 0 0 0 a 11 0 0 0 0 a
1 8 0 0 0 b 0 7 2 0 0 b
0 1 10 1 0 c 0 0 8 4 0 c
0 0 1 11 0 d 0 0 10 2 0 d
0 0 0 0 12 e 0 0 10 2 0 e
Number of Clusters 6
Mean, Maximum, and Minimum Mean and Maximum
Correctly classified 53 (94.6429%) Correctly classified 53 (94.6429%)
a b c d e ← class. as a b c d e ← class. as

11 0 0 0 0 a 11 0 0 0 0 a
0 8 1 0 0 b 0 8 1 0 0 b
0 0 11 1 0 c 0 0 11 1 0 c
0 0 1 11 0 d 0 0 1 11 0 d
0 0 0 0 12 e 0 0 0 0 12 e
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Mean values only Maximum values only
Correctly classified 50 (89.2857%) Correctly classified 29 (51.7857%)
a b c d e ← class. as a b c d e ← class. as

10 1 0 0 0 a 11 0 0 0 0 a
1 8 0 0 0 b 0 8 1 0 0 b
0 2 9 1 0 c 0 0 8 4 0 c
0 0 1 11 0 d 0 0 10 2 0 d
0 0 0 0 12 e 0 0 10 2 0 e
Number of Clusters 7
Mean, Maximum, and Minimum Mean and Maximum
Correctly classified 54 (96.4286%) Correctly classified 54 (96.4286%)
a b c d e ← class. as a b c d e ← class. as

11 0 0 0 0 a 11 0 0 0 0 a
0 8 1 0 0 b 0 8 1 0 0 b
0 0 12 0 0 c 0 0 12 0 0 c
0 0 1 11 0 d 0 0 1 11 0 d
0 0 0 0 12 e 0 0 0 0 12 e
Mean values only Maximum values only
Correctly classified 53 (94.6429%) Correctly classified 30 (53.5714%)
a b c d e ← class. as a b c d e ← class. as

11 0 0 0 0 a 11 0 0 0 0 a
1 8 0 0 0 b 0 7 2 0 0 b
0 1 11 0 0 c 0 0 2 8 2 c
0 0 1 11 0 d 0 0 0 8 4 d
0 0 0 0 12 e 0 0 0 10 2 e
Number of Clusters 8
Mean, Maximum, and Minimum Mean and Maximum
Correctly classified 55 (98.2143%) Correctly classified 55 (98.2143%)
a b c d e ← class. as a b c d e ← class. as

11 0 0 0 0 a 11 0 0 0 0 a
0 8 1 0 0 b 0 8 1 0 0 b
0 0 12 0 0 c 0 0 12 0 0 c
0 0 0 12 0 d 0 0 0 12 0 d
0 0 0 0 12 e 0 0 0 0 12 e
Mean values only Maximum values only
Correctly classified 54 (96.4286%) Correctly classified 28 (50%)
a b c d e ← class. as a b c d e ← class. as

11 0 0 0 0 a 11 0 0 0 0 a
1 8 0 0 0 b 0 7 2 0 0 b
0 1 11 0 0 c 0 0 8 4 0 c
0 0 0 12 0 d 0 0 10 2 0 d
0 0 0 0 12 e 0 0 10 2 0 e
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Number of Folders 6
Number of Clusters 2
Mean, Maximum, and Minimum Mean and Maximum
Correctly classified 52 (92.8571%) Correctly classified 53 (94.6429%)
a b c d e ← class. as a b c d e ← class. as

11 0 0 0 0 a 11 0 0 0 0 a
0 8 1 0 0 b 0 9 0 0 0 b
0 0 10 2 0 c 0 0 10 2 0 c
0 0 0 11 1 d 0 0 0 11 1 d
0 0 0 0 12 e 0 0 0 0 12 e
Mean values only Maximum values only
Correctly classified 52 (92.8571%) Correctly classified 28 (50%)
a b c d e ← class. as a b c d e ← class. as

11 0 0 0 0 a 11 0 0 0 0 a
1 8 0 0 0 b 0 7 2 0 0 b
0 0 10 2 0 c 0 0 8 4 0 c
0 0 0 11 1 d 0 0 10 2 0 d
0 0 0 0 12 e 0 0 10 2 0 e
Number of Clusters 3
Mean, Maximum, and Minimum Mean and Maximum
Correctly classified 53 (94.6429%) Correctly classified 53 (94.6429%)
a b c d e ← class. as a b c d e ← class. as

11 0 0 0 0 a 11 0 0 0 0 a
0 8 1 0 0 b 0 8 1 0 0 b
0 0 12 0 0 c 0 0 12 0 0 c
0 0 1 11 0 d 0 0 1 11 0 d
0 0 0 1 11 e 0 0 0 1 11 e
Mean values only Maximum values only
Correctly classified 52 (92.8571%) Correctly classified 29 (51.7857%)
a b c d e ← class. as a b c d e ← class. as

11 0 0 0 0 a 11 0 0 0 0 a
1 7 1 0 0 b 0 8 1 0 0 b
0 0 12 0 0 c 0 0 8 4 0 c
0 0 1 11 0 d 0 0 10 2 0 d
0 0 0 1 11 e 0 0 10 2 0 e
Number of Clusters 4
Mean, Maximum, and Minimum Mean and Maximum
Correctly classified 54 (96.4286%) Correctly classified 54 (96.4286%)
a b c d e ← class. as a b c d e ← class. as

11 0 0 0 0 a 11 0 0 0 0 a
0 8 1 0 0 b 0 8 1 0 0 b
0 0 12 0 0 c 0 0 12 0 0 c
0 0 1 11 0 d 0 0 1 11 0 d
0 0 0 0 12 e 0 0 0 0 12 e
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Mean values only Maximum values only
Correctly classified 53 (94.6429%) Correctly classified 29 (51.7857%)
a b c d e ← class. as a b c d e ← class. as

11 0 0 0 0 a 11 0 0 0 0 a
1 7 1 0 0 b 0 8 1 0 0 b
0 0 12 0 0 c 0 0 8 4 0 c
0 0 1 11 0 d 0 0 10 2 0 d
0 0 0 0 12 e 0 0 10 2 0 e
Number of Clusters 5
Mean, Maximum, and Minimum Mean and Maximum
Correctly classified 54 (96.4286%) Correctly classified 54 (96.4286%)
a b c d e ← class. as a b c d e ← class. as

11 0 0 0 0 a 11 0 0 0 0 a
0 8 1 0 0 b 0 8 1 0 0 b
0 0 12 0 0 c 0 0 12 0 0 c
0 0 1 11 0 d 0 0 1 11 0 d
0 0 0 0 12 e 0 0 0 0 12 e
Mean values only Maximum values only
Correctly classified 54 (96.4286%) Correctly classified 43 (76.7857%)
a b c d e ← class. as a b c d e ← class. as

11 0 0 0 0 a 11 0 0 0 0 a
0 8 1 0 0 b 0 8 1 0 0 b
0 0 12 0 0 c 0 0 12 0 0 c
0 0 1 11 0 d 0 0 9 0 3 d
0 0 0 0 12 e 0 0 0 0 12 e
Number of Clusters 6
Mean, Maximum, and Minimum Mean and Maximum
Correctly classified 53 (94.6429%) Correctly classified 53 (94.6429%)
a b c d e ← class. as a b c d e ← class. as

11 0 0 0 0 a 11 0 0 0 0 a
0 8 1 0 0 b 0 8 1 0 0 b
0 0 12 0 0 c 0 0 12 0 0 c
0 0 1 10 1 d 0 0 1 10 1 d
0 0 0 0 12 e 0 0 0 0 12 e
Mean values only Maximum values only
Correctly classified 52 (92.8571%) Correctly classified 43 (76.7857%)
a b c d e ← class. as a b c d e ← class. as

11 0 0 0 0 a 11 0 0 0 0 a
1 8 0 0 0 b 0 8 1 0 0 b
0 1 11 0 0 c 0 0 12 0 0 c
0 0 1 10 1 d 0 0 9 0 3 d
0 0 0 0 12 e 0 0 0 0 12 e
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Number of Clusters 7
Mean, Maximum, and Minimum Mean and Maximum
Correctly classified 54 (96.4286%) Correctly classified 54 (96.4286%)
a b c d e ← class. as a b c d e ← class. as

11 0 0 0 0 a 11 0 0 0 0 a
0 8 1 0 0 b 0 8 1 0 0 b
0 0 12 0 0 c 0 0 12 0 0 c
0 0 1 11 0 d 0 0 1 11 0 d
0 0 0 0 12 e 0 0 0 0 12 e
Mean values only Maximum values only
Correctly classified 53 (94.6429%) Correctly classified 42 (75%)
a b c d e ← class. as a b c d e ← class. as

11 0 0 0 0 a 11 0 0 0 0 a
0 9 0 0 0 b 0 8 1 0 0 b
0 1 11 0 0 c 0 0 12 0 0 c
0 0 1 11 0 d 0 0 9 0 3 d
0 0 0 1 11 e 0 0 1 0 11 e
Number of Clusters 8
Mean, Maximum, and Minimum Mean and Maximum
Correctly classified 54 (96.4286%) Correctly classified 53 (94.6429%)
a b c d e ← class. as a b c d e ← class. as

11 0 0 0 0 a 11 0 0 0 0 a
0 8 1 0 0 b 1 7 1 0 0 b
0 0 12 0 0 c 0 0 12 0 0 c
0 0 1 11 0 d 0 0 1 11 0 d
0 0 0 0 12 e 0 0 0 0 12 e
Mean values only Maximum values only
Correctly classified 54 (96.4286%) Correctly classified 28 (50%)
a b c d e ← class. as a b c d e ← class. as

11 0 0 0 0 a 11 0 0 0 0 a
1 8 0 0 0 b 1 7 1 0 0 b
0 0 12 0 0 c 0 0 8 4 0 c
0 0 1 11 0 d 0 0 10 2 0 d
0 0 0 0 12 e 0 0 10 2 0 e

Number of Folders 8
Number of Clusters 2
Mean, Maximum, and Minimum Mean and Maximum
Correctly classified 52 (92.8571%) Correctly classified 52 (92.8571%)
a b c d e ← class. as a b c d e ← class. as

11 0 0 0 0 a 11 0 0 0 0 a
0 7 2 0 0 b 0 7 2 0 0 b
0 0 11 1 0 c 0 0 11 1 0 c
0 0 0 12 0 d 0 0 0 12 0 d
0 0 0 1 11 e 0 0 0 1 11 e
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Mean values only Maximum values only
Correctly classified 52 (92.8571%) Correctly classified 28 (50%)
a b c d e ← class. as a b c d e ← class. as

11 0 0 0 0 a 11 0 0 0 0 a
1 7 1 0 0 b 0 7 2 0 0 b
0 0 11 1 0 c 0 0 8 4 0 c
0 0 0 12 0 d 0 0 10 2 0 d
0 0 0 1 11 e 0 0 10 2 0 e
Number of Clusters 3
Mean, Maximum, and Minimum Mean and Maximum
Correctly classified 53 (94.6429%) Correctly classified 53 (94.6429%)
a b c d e ← class. as a b c d e ← class. as

11 0 0 0 0 a 11 0 0 0 0 a
0 7 2 0 0 b 0 7 2 0 0 b
0 0 12 0 0 c 0 0 12 0 0 c
0 0 1 11 0 d 0 0 1 11 0 d
0 0 0 0 12 e 0 0 0 0 12 e
Mean values only Maximum values only
Correctly classified 51 (91.0714%) Correctly classified 42 (75%)
a b c d e ← class. as a b c d e ← class. as

10 1 0 0 0 a 11 0 0 0 0 a
1 8 0 0 0 b 0 7 2 0 0 b
0 1 11 0 0 c 0 0 12 0 0 c
0 0 1 11 0 d 0 0 9 0 3 d
0 0 0 1 11 e 0 0 0 0 12 e
Number of Clusters 4
Mean, Maximum, and Minimum Mean and Maximum
Correctly classified 54 (96.4286%) Correctly classified 54 (96.4286%)
a b c d e ← class. as a b c d e ← class. as

11 0 0 0 0 a 11 0 0 0 0 a
0 8 1 0 0 b 0 8 1 0 0 b
0 0 12 0 0 c 0 0 12 0 0 c
0 0 0 11 1 d 0 0 0 11 1 d
0 0 0 0 12 e 0 0 0 0 12 e
Mean values only Maximum values only
Correctly classified 53 (94.6429%) Correctly classified 42 (75%)
a b c d e ← class. as a b c d e ← class. as

11 0 0 0 0 a 11 0 0 0 0 a
1 8 0 0 0 b 0 7 2 0 0 b
0 1 11 0 0 c 0 0 12 0 0 c
0 0 0 11 1 d 0 0 9 0 3 d
0 0 0 0 12 e 0 0 0 0 12 e
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Number of Clusters 5
Mean, Maximum, and Minimum Mean and Maximum
Correctly classified 52 (92.8571%) Correctly classified 53 (94.6429%)
a b c d e ← class. as a b c d e ← class. as

11 0 0 0 0 a 11 0 0 0 0 a
0 7 2 0 0 b 0 8 1 0 0 b
0 0 11 1 0 c 0 0 11 1 0 c
0 0 0 12 0 d 0 0 0 12 0 d
0 0 0 1 11 e 0 0 0 1 11 e
Mean values only Maximum values only
Correctly classified 52 (92.8571%) Correctly classified 42 (75%)
a b c d e ← class. as a b c d e ← class. as

11 0 0 0 0 a 11 0 0 0 0 a
1 8 0 0 0 b 0 7 2 0 0 b
0 1 10 1 0 c 0 0 12 0 0 c
0 0 0 12 0 d 0 0 9 0 3 d
0 0 0 1 11 e 0 0 0 0 12 e
Number of Clusters 6
Mean, Maximum, and Minimum Mean and Maximum
Correctly classified 54 (96.4286%) Correctly classified 54 (96.4286%)
a b c d e ← class. as a b c d e ← class. as

11 0 0 0 0 a 11 0 0 0 0 a
0 8 1 0 0 b 0 8 1 0 0 b
0 0 12 0 0 c 0 0 12 0 0 c
0 0 0 12 0 d 0 0 0 12 0 d
0 0 0 1 11 e 0 0 0 1 11 e
Mean values only Maximum values only
Correctly classified 52 (92.8571%) Correctly classified 43 (76.7857%)
a b c d e ← class. as a b c d e ← class. as

11 0 0 0 0 a 11 0 0 0 0 a
1 7 1 0 0 b 0 8 1 0 0 b
0 1 11 0 0 c 0 0 12 0 0 c
0 0 0 12 0 d 0 0 9 0 3 d
0 0 0 1 11 e 0 0 0 0 12 e
Number of Clusters 7
Mean, Maximum, and Minimum Mean and Maximum
Correctly classified 53 (94.6429%) Correctly classified 54 (96.4286%)
a b c d e ← class. as a b c d e ← class. as

11 0 0 0 0 a 11 0 0 0 0 a
1 7 1 0 0 b 0 8 1 0 0 b
0 0 12 0 0 c 0 0 12 0 0 c
0 0 0 12 0 d 0 0 0 12 0 d
0 0 0 1 11 e 0 0 0 1 11 e
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Mean values only Maximum values only
Correctly classified 54 (96.4286%) Correctly classified 42 (75%)
a b c d e ← class. as a b c d e ← class. as
11 0 0 0 0 a 11 0 0 0 0 a
1 8 0 0 0 b 0 7 2 0 0 b
0 0 12 0 0 c 0 0 12 0 0 c
0 0 0 12 0 d 0 0 9 0 3 d
0 0 0 1 11 e 0 0 0 0 12 e
Number of Clusters 8
Mean, Maximum, and Minimum Mean and Maximum
Correctly classified 53 (94.6429%) Correctly classified 54 (96.4286%)
a b c d e ← class. as a b c d e ← class. as
11 0 0 0 0 a 11 0 0 0 0 a
1 7 1 0 0 b 0 8 1 0 0 b
0 0 12 0 0 c 0 0 12 0 0 c
0 0 0 12 0 d 0 0 0 12 0 d
0 0 0 1 11 e 0 0 0 1 11 e
Mean values only Maximum values only
Correctly classified 54 (96.4286%) Correctly classified 42 (75%)
a b c d e ← class. as a b c d e ← class. as
11 0 0 0 0 a 11 0 0 0 0 a
1 8 0 0 0 b 0 7 2 0 0 b
0 0 12 0 0 c 0 0 11 1 0 c
0 0 0 12 0 d 0 0 8 1 3 d
0 0 0 1 11 e 0 0 0 0 12 e

Number of Folders 10
Number of Clusters 2
Mean, Maximum, and Minimum Mean and Maximum
Correctly classified 52 51 (91.0714%) Correctly classified 51 (91.0714%)
a b c d e ← class. as a b c d e ← class. as
10 1 0 0 0 a 10 1 0 0 0 a
1 7 1 0 0 b 1 7 1 0 0 b
0 0 11 1 0 c 0 0 11 1 0 c
0 0 0 12 0 d 0 0 0 12 0 d
0 0 0 1 11 e 0 0 0 1 11 e
Mean values only Maximum values only
Correctly classified 52 (92.8571%) Correctly classified 25 (44.6429%)
a b c d e ← class. as a b c d e ← class. as
11 0 0 0 0 a 10 1 0 0 0 a
1 7 1 0 0 b 1 5 3 0 0 b
0 0 11 1 0 c 0 0 8 4 0 c
0 0 0 12 0 d 0 0 10 2 0 d
0 0 0 1 11 e 0 0 10 2 0 e
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Number of Clusters 3
Mean, Maximum, and Minimum Mean and Maximum
Correctly classified 51 (91.0714%) Correctly classified 52 (92.8571%)
a b c d e ← class. as a b c d e ← class. as

10 1 0 0 0 a 10 1 0 0 0 a
1 6 2 0 0 b 1 8 0 0 0 b
0 0 11 1 0 c 0 1 10 1 0 c
0 0 0 12 0 d 0 0 0 12 0 d
0 0 0 0 12 e 0 0 0 0 12 e
Mean values only Maximum values only
Correctly classified 53 (94.6429%) Correctly classified 25 (44.6429%)
a b c d e ← class. as a b c d e ← class. as

11 0 0 0 0 a 10 1 0 0 0 a
0 9 0 0 0 b 1 5 3 0 0 b
0 2 9 1 0 c 0 0 8 4 0 c
0 0 0 12 0 d 0 0 10 2 0 d
0 0 0 0 12 e 0 0 10 2 0 e
Number of Clusters 4
Mean, Maximum, and Minimum Mean and Maximum
Correctly classified 53 (94.6429%) Correctly classified 53 (94.6429%)
a b c d e ← class. as a b c d e ← class. as

11 0 0 0 0 a 11 0 0 0 0 a
1 7 1 0 0 b 1 7 1 0 0 b
0 0 11 1 0 c 0 0 11 1 0 c
0 0 0 12 0 d 0 0 0 12 0 d
0 0 0 0 12 e 0 0 0 0 12 e
Mean values only Maximum values only
Correctly classified 53 (94.6429%) Correctly classified 26 (46.4286%)
a b c d e ← class. as a b c d e ← class. as

11 0 0 0 0 a 11 0 0 0 0 a
1 8 0 0 0 b 1 5 3 0 0 b
0 1 10 1 0 c 0 0 8 4 0 c
0 0 0 12 0 d 0 0 10 2 0 d
0 0 0 0 12 e 0 0 10 2 0 e
Number of Clusters 5
Mean, Maximum, and Minimum Mean and Maximum
Correctly classified 53 (94.6429%) Correctly classified 53 (94.6429%)
a b c d e ← class. as a b c d e ← class. as

11 0 0 0 0 a 11 0 0 0 0 a
1 7 1 0 0 b 1 7 1 0 0 b
0 0 11 1 0 c 0 0 11 1 0 c
0 0 0 12 0 d 0 0 0 12 0 d
0 0 0 0 12 e 0 0 0 0 12 e
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Mean values only Maximum values only
Correctly classified 53 (94.6429%) Correctly classified 26 (46.4286%)
a b c d e ← class. as a b c d e ← class. as

11 0 0 0 0 a 11 0 0 0 0 a
1 8 0 0 0 b 1 5 3 0 0 b
0 1 10 1 0 c 0 0 8 4 0 c
0 0 0 12 0 d 0 0 10 2 0 d
0 0 0 0 12 e 0 0 10 2 0 e
Number of Clusters 6
Mean, Maximum, and Minimum Mean and Maximum
Correctly classified 53 (94.6429%) Correctly classified 53 (94.6429%)
a b c d e ← class. as a b c d e ← class. as

11 0 0 0 0 a 11 0 0 0 0 a
1 7 1 0 0 b 1 7 1 0 0 b
0 0 12 0 0 c 0 0 12 0 0 c
0 0 0 12 0 d 0 0 0 12 0 d
0 0 0 1 11 e 0 0 0 1 11 e
Mean values only Maximum values only
Correctly classified 53 (94.6429%) Correctly classified 34 (60.7143%)
a b c d e ← class. as a b c d e ← class. as

11 0 0 0 0 a 11 0 0 0 0 a
1 8 0 0 0 b 1 7 1 0 0 b
0 1 11 0 0 c 0 0 6 5 1 c
0 0 0 12 0 d 0 0 0 8 4 d
0 0 0 1 11 e 0 0 0 10 2 e
Number of Clusters 7
Mean, Maximum, and Minimum Mean and Maximum
Correctly classified 52 (92.8571%) Correctly classified 52 (92.8571%)
a b c d e ← class. as a b c d e ← class. as

11 0 0 0 0 a 11 0 0 0 0 a
1 7 1 0 0 b 1 7 1 0 0 b
0 0 11 1 0 c 0 0 11 1 0 c
0 0 0 12 0 d 0 0 0 12 0 d
0 0 0 1 11 e 0 0 0 1 11 e
Mean values only Maximum values only
Correctly classified 52 (92.8571%) Correctly classified 26 (46.4286%)
a b c d e ← class. as a b c d e ← class. as

11 0 0 0 0 a 11 0 0 0 0 a
1 8 0 0 0 b 1 5 3 0 0 b
0 1 10 1 0 c 0 0 8 4 0 c
0 0 0 12 0 d 0 0 10 2 0 d
0 0 0 1 11 e 0 0 10 2 0 e
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Number of Clusters 8
Mean, Maximum, and Minimum Mean and Maximum
Correctly classified 52 (92.8571%) Correctly classified 53 (94.6429%)
a b c d e ← class. as a b c d e ← class. as

11 0 0 0 0 a 11 0 0 0 0 a
1 7 1 0 0 b 0 8 1 0 0 b
0 0 12 0 0 c 0 0 12 0 0 c
0 0 1 11 0 d 0 0 1 11 0 d
0 0 0 1 11 e 0 0 0 1 11 e
Mean values only Maximum values only
Correctly classified 52 (92.8571%) Correctly classified 39 (69.6429%)
a b c d e ← class. as a b c d e ← class. as

11 0 0 0 0 a 11 0 0 0 0 a
1 8 0 0 0 b 0 6 3 0 0 b
0 1 11 0 0 c 0 0 11 1 0 c
0 0 1 11 0 d 0 0 1 1 10 d
0 0 0 1 11 e 0 0 0 2 10 e

Number of Folders 12
Number of Clusters 2
Mean, Maximum, and Minimum Mean and Maximum
Correctly classified 52 (92.8571%) Correctly classified 52 (92.8571%)
a b c d e ← class. as a b c d e ← class. as

11 0 0 0 0 a 11 0 0 0 0 a
0 8 1 0 0 b 0 8 1 0 0 b
0 0 11 1 0 c 0 0 11 1 0 c
0 0 0 11 1 d 0 0 0 11 1 d
0 0 0 1 11 e 0 0 0 1 11 e
Mean values only Maximum values only
Correctly classified 52 (92.8571%) Correctly classified 28 (50%)
a b c d e ← class. as a b c d e ← class. as

11 0 0 0 0 a 11 0 0 0 0 a
1 8 0 0 0 b 0 7 2 0 0 b
0 0 11 1 0 c 0 0 8 4 0 c
0 0 0 11 1 d 0 0 10 2 0 d
0 0 0 1 11 e 0 0 10 2 0 e
Number of Clusters 3
Mean, Maximum, and Minimum Mean and Maximum
Correctly classified 53 (94.6429%) Correctly classified 54 (96.4286%)
a b c d e ← class. as a b c d e ← class. as

11 0 0 0 0 a 11 0 0 0 0 a
0 7 2 0 0 b 0 8 1 0 0 b
0 0 12 0 0 c 0 0 12 0 0 c
0 0 1 11 0 d 0 0 1 11 0 d
0 0 0 0 12 e 0 0 0 0 12 e
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Mean values only Maximum values only
Correctly classified 52 (92.8571%) Correctly classified 28 (50%)
a b c d e ← class. as a b c d e ← class. as

10 1 0 0 0 a 11 0 0 0 0 a
1 8 0 0 0 b 0 7 2 0 0 b
0 1 11 0 0 c 0 0 8 4 0 c
0 0 1 11 0 d 0 0 10 2 0 d
0 0 0 0 12 e 0 0 10 2 0 e
Number of Clusters 4
Mean, Maximum, and Minimum Mean and Maximum
Correctly classified 54 (96.4286%) Correctly classified 54 (96.4286%)
a b c d e ← class. as a b c d e ← class. as

11 0 0 0 0 a 11 0 0 0 0 a
0 8 1 0 0 b 0 8 1 0 0 b
0 0 11 1 0 c 0 0 11 1 0 c
0 0 0 12 0 d 0 0 0 12 0 d
0 0 0 0 12 e 0 0 0 0 12 e
Mean values only Maximum values only
Correctly classified 52 (92.8571%) Correctly classified 42 (75%)
a b c d e ← class. as a b c d e ← class. as

11 0 0 0 0 a 11 0 0 0 0 a
1 7 1 0 0 b 0 7 2 0 0 b
0 1 10 1 0 c 0 0 12 0 0 c
0 0 0 12 0 d 0 0 9 0 3 d
0 0 0 0 12 e 0 0 0 0 12 e
Number of Clusters 5
Mean, Maximum, and Minimum Mean and Maximum
Correctly classified 53 (94.6429%) Correctly classified 54 (96.4286%)
a b c d e ← class. as a b c d e ← class. as

11 0 0 0 0 a 11 0 0 0 0 a
0 7 2 0 0 b 0 8 1 0 0 b
0 0 12 0 0 c 0 0 12 0 0 c
0 0 1 11 0 d 0 0 1 11 0 d
0 0 0 0 12 e 0 0 0 0 12 e
Mean values only Maximum values only
Correctly classified 53 (94.6429%) Correctly classified 42 (75%)
a b c d e ← class. as a b c d e ← class. as

11 0 0 0 0 a 11 0 0 0 0 a
1 8 0 0 0 b 0 7 2 0 0 b
0 1 11 0 0 c 0 0 12 0 0 c
0 0 1 11 0 d 0 0 9 0 3 d
0 0 0 0 12 e 0 0 0 0 12 e
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Number of Clusters 6
Mean, Maximum, and Minimum Mean and Maximum
Correctly classified 54 (96.4286%) Correctly classified 54 (96.4286%)
a b c d e ← class. as a b c d e ← class. as

11 0 0 0 0 a 11 0 0 0 0 a
0 8 1 0 0 b 0 8 1 0 0 b
0 0 11 1 0 c 0 0 11 1 0 c
0 0 0 12 0 d 0 0 0 12 0 d
0 0 0 0 12 e 0 0 0 0 12 e
Mean values only Maximum values only
Correctly classified 53 (94.6429%) Correctly classified 42 (75%)
a b c d e ← class. as a b c d e ← class. as

11 0 0 0 0 a 11 0 0 0 0 a
1 8 0 0 0 b 0 7 2 0 0 b
0 1 10 1 0 c 0 0 11 1 0 c
0 0 0 12 0 d 0 0 8 1 3 d
0 0 0 0 12 e 0 0 0 0 12 e
Number of Clusters 7
Mean, Maximum, and Minimum Mean and Maximum
Correctly classified 54 (96.4286%) Correctly classified 54 (96.4286%)
a b c d e ← class. as a b c d e ← class. as

11 0 0 0 0 a 11 0 0 0 0 a
0 8 1 0 0 b 0 8 1 0 0 b
0 0 11 1 0 c 0 0 11 1 0 c
0 0 0 12 0 d 0 0 0 12 0 d
0 0 0 0 12 e 0 0 0 0 12 e
Mean values only Maximum values only
Correctly classified 52 (92.8571%) Correctly classified 46 (82.1429%)
a b c d e ← class. as a b c d e ← class. as

11 0 0 0 0 a 11 0 0 0 0 a
1 8 0 0 0 b 0 8 1 0 0 b
0 1 10 1 0 c 0 0 6 6 0 c
0 0 0 12 0 d 0 0 6 6 0 c
0 0 0 1 11 e 0 0 0 0 12 e
Number of Clusters 8
Mean, Maximum, and Minimum Mean and Maximum
Correctly classified 52 (92.8571%) Correctly classified 53 (94.6429%)
a b c d e ← class. as a b c d e ← class. as

11 0 0 0 0 a 11 0 0 0 0 a
0 7 2 0 0 b 0 8 1 0 0 b
0 0 11 1 0 c 0 0 11 1 0 c
0 0 1 11 0 d 0 0 1 11 0 d
0 0 0 0 12 e 0 0 0 0 12 e

A.25



Mean values only Maximum values only
Correctly classified 52 (92.8571%) Correctly classified 42 (75%)
a b c d e ← class. as a b c d e ← class. as
11 0 0 0 0 a 11 0 0 0 0 a
1 8 0 0 0 b 0 7 2 0 0 b
0 1 10 1 0 c 0 0 11 1 0 c
0 0 1 11 0 d 0 0 8 1 3 d
0 0 0 0 12 e 0 0 0 0 12 e
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