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Abstract

Structural health monitoring is defined as a computational modeling system used to quan-
tify the health of a structure and its life time. A variety of techniques have been introduced
to quantify damage detection and identification in structures. Nevertheless, the Bayesian net-
works have rarely been used for damage detection in laminated composite materials. This
paper is intended to introduce the Bayesian network in general and the Naive-bayes in specific
as one of the most successful classification systems to simulate damage detection in laminated
composite materials. A method for feature subset selection based on intervals between the am-
plitudes of waves used for damage detection is also introduced. The method utilizes clustering
in the process of feature subset selection. The Bayesian classification and the feature selec-
tion method are analyzed based on theoretical point of view and only preliminary tests were
conducted based on artificial damages created in quasi-isotopic laminates of the AS4/3501-6
graphite/epoxy system.

1 Introduction

Recently, there has been a tremendous growth in the usage of laminated composite materials
(LCMs) in all types of engineering structures (e.g. aerospace, automotive, and sports). LCMs
are fabricated by stacking plates or plies of composite materials together to acquire unique prop-
erties (e.g high strength and stiffness, and light weight) that can not be guaranteed by individual
constituents of the laminate. One of the drawbacks of such materials is their vulnerability to differ-
ent kind of damages. Some of the damages are manufacturing related, like foreign object inclusion,
porosity, resin rich area, etc. Others are service related, which may result from a bird strike to an

1



aircraft and rain hail during flight, depress hitting in runway during take off or landing, and tools
dropped during maintenance procedures [1].

The damages have the potential of growing and leading to catastrophic loss of human life, and
decrease in economy. Examples of real-life damages can be shown as airline crashes, space shuttle
explosions, and building and bridge collapses. It is very important to prevent the materials from
catastrophic failures and to prolong their service life by early detection of the damages. There
are a variety of nondestructive evaluation (NDE) techniques developed to detect the damages (e.g.
ultrasonic, eddy-current, C-scan, and etc.). Sometimes, the NDE is called nondestructive testing
(NDT) [2].

One of the smart potential solutions used for damage detection is the structural health moni-
toring system (SHM). The literature defines the SHM as the acquisition, validation, and analysis
of technical data to facilitate the life-cycle management decisions [3]. Kessler et al. [4] say, SHM
denotes a reliable system with the ability to detect and interpret adverse changes in a structure due
to damage or normal operation.

One of the most important and exciting areas of the SHM systems is the development of quan-
titative modeling techniques to predict the presence of damages in LCMs. Researchers in the
SHM field have borrowed and implemented a variety of artificial intelligent and machine learning
techniques to quantitatively identify and detect damages in structures. Neural network (NN) is
one of these techniques which has been widely adopted by many researchers in this area [5–8].
Chakraborty [9] introduces an approach that predicts the presence of embedded delamination (in
terms of location, shape, and size) in fiber reinforced plastic composite laminates by using back
propagation (BP) NN with 3 layers (input, hidden, and output). The network has been tested to
predict the presence of delamination along with its size, shape, and location. Su and Ye [10] have
demonstrated a lamb wave (LW) propagation-based quantitative identification scheme for delam-
ination in carbon-fiber reinforced polymer (CFRP) composite structures by using a multi-layer
BP NN. Another methods like rule-based, fuzzy logic, and genetic algorithms have been used for
damage detection and identification.

Recently Bayesian networks (BNs) have emerged as a machine learning technique and a gener-
alizing graph-based framework for creating statistical models of domains with inherent uncertainty.
BNs have attracted a great deal of attention in research institutions as well as in industry as mod-
eling tools for medical systems, risk prediction, forecasting, robotics, computer games, and etc.
[11, 12].

The objective of this paper is to introduce BN in general and Naive-bayes in specifics as clas-
sifiers to simulate damage detection in LCMs for the NDT and SHM communities. The paper
also aims to present a novel method for feature subset selection of wave amplitudes for damage
detection.

This paper is organized as follows, section two gives a preliminary overview to Bayesian net-
works based on laminated composite materials and how the Bayeisan network can be used as a
classification technique. Section three, shows the Naive bayes in SHM systems and how it can be
utilized for damage detection employing waves of some NDT techniques. Section four introduces
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the novel f -fold feature subset selections. Section five shows the experiments used in analyzing the
f -folds feature subset selection method. Section six concludes the paper and shows some future
works.

2 Bayesian Networks

BNs are defined as graphical models that allow us to encode relationships between variables of
interest and reason about uncertain domains. They consist of a qualitative part, where features
from graph theory are used, and a quantitative part consisting of potentials, which are real-valued
functions over a set of variables from the graph. They consist of the following:

• A network structure G = {V, E}, where V = {V1, V2, . . . ,Vn} represents a set of variables
and E represents a set of directed arcs between the variables (see Figure 6(a)).

• Each variable has a finite set of mutually exclusive states.

• A set of conditional probability tables (CPTs) associated with each variable.

The directions of the arcs in BNs often represent causal dependency between variables. BNs
model the quantitative strength of the connections between them, allowing their probabilistic be-
liefs to be updated automatically as new information arrive. The arcs in any BNs are not permitted
to be directed cycles, we cannot start from a variable and simply come back to it by following
the direction of the arcs in the network (see Figure 1). For this reason the networks are known as
directed acyclic graphs (DAGs) [11, 12].

(a) Acyclic graph. (b) Cyclic graph.

Figure 1: Figure a represents a BN, where as Figure b does not represent a BN. In the later, if
we start from A following the arcs, we go to B, C, D, then back to A forming a cycle (this is not
allowed in BN).

In BNs, a variable is a parent of a child, if there is an arc from the former to the later. In Figure
6(a), variable A is a parent to the variable B, variable B is a child to the variable A and a parent to
the variable C, and variable D is a child to the variables A and C.
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BNs can be build by an expert on the domain of study, a structure learning algorithm that
automatically extract the structure from a data set, or a combination of both.

The values of each variable should be mutually exclusive and exhaustive, that means the vari-
able must take on exactly one of these values at a time. For example, if we considered building a
model to predict the presence of a damage in a composite material, many factors might be taken
into account, e.g. the age of the material (Age), whether a tool dropped on the material or not (Tool-
Drop), and etc. These factors can be represented as variables in the model connected by directed
links according to the direction of impacts (see Figure 4). In Figure 4, the variables ToolDrop and
Age have an impact on the variable Damage. That means the presence of the damage can be deter-
mined by the states of ToolDrop and Age. No one can argue that the damage on the material has
caused the dropping of the tool on the material or has an impact on the age of the material. Every
variable can take one of a different type of discrete values (the states of the variable). The variables
Damage and ToolDrop might be represented by states, which take boolean values yes and no. And
the variable Age might be represented by states that take ordered values, new, medium, and old.

Figure 2: The figure shows a small BN structure for damage detection in LCM.

If we assume A is a variable with n states a1, a2, . . ., an, then P(A) denotes a probability
distribution over these states:

P (A) = (x1, x2, . . . , xn); xi ≤ 0;
∑

i=1

xi = 1 (1)

where xi is the probability of A being in state ai. This can be written as P (A = ai) = xi or P
(ai) = xi, e.g. P(Age = new) = 0.8.

The basic concept in the BN treatment of certainties in causal networks is conditional proba-
bilities. If the variable B has m states b1, b2, . . ., bn, the conditional probability statement can be
shown as follows”

”The probability of the event a given the event b is x.”

which can be written as P(a | b) = x. The probability P(A | B) implies an n × m table including
the probabilities P(ai | bj) (Table 1).
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Table 1: An example of P(ai | bj), where 1 ≤ i ≤ 2 and 1 ≤ j ≤ 3. The columns sum to 1.
b1 b2 b3

a1 0.4 0.3 0.6
a2 0.6 0.7 0.4

The fundamental rule for probability calculus is:

P (a|b)P (b) = P (a, b), (2)

where P(a, b) is the probability of the joint event a and b. From this we can say P(a | b) P(b)
= P(a | b) P(b), and this yields the well known Bayes’ rule:

P (b|a) =
P (a|b)P (b)

P (a)
(3)

In Figure 4, the variable Damage has two parents and the variables ToolDrop and Age have
no any parents. The joint probability distributions for the variables are shown as P(Damage |
Age, ToolDrop) P(ToolDrop), and P(Age). These probabilities are determined by an expert or
automatically extracted from a data set. Since the variables ToolDorp and Age have no parents,
their prior probabilities can be specified as follows:

• P(ToolDrop = yes) = 0.8 and P(ToolDrop = no) = 0.2

• P(Age = new) = 0.2, P(Age = medium) = 0.7, and P(Age = old) = 0.1.

The variable Damage has 3 states and two parents each with 2 states. The conditional proba-
bility distribution of this variable can be shown as on Table 2. The table has 12 probability values
(3 × 2 × 2).

ToolDrop yes no
Age new medium old new medium old
yes 0.2 0.4 0.9 0.01 0.5 0.4
no 0.8 0.6 0.1 0.99 0.5 0.6

Table 2: CPT for P(Damage | Age, ToolDrop). The yes and no in the first column are the states of
Damage. The first value (0.2) in raw 3 and column 2.

BNs give full representation of probability distributions over their variables. They can be con-
ditioned on any subset of their variables, supporting any direction of reasoning. That means any
variables may be query variables and any may be evidence variables. Whenever new information
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have arrived new beliefs can be calculated. We have shown that P(ToolDrop = yes) = 0.8 and
P(Age = old) = 0.1. Suppose that we have discovered that a tool is dropped on the material and
the material is very old, then P(ToolDrop = yes) = 1.0 and P(Age = old) = 1.0. They are shown in
Figure 3(a) as percentages (100.00 and 00.00) with red colors. This kind of probabilities is some-
times referred as evidence or instantiation. In BNs, when new evidence arrive to some variables,
the beliefs on other variables may be changed. This can be shown by carefully studying Figure
3. This process of conditioning on some variables, when observing the value of other variables is
known as probability propagation, inference, or belief updating.

(a) The ev-
idence that
the tool is
dropped and
the material
is old (Age is
old), increased
our belief on
the damage to
90%.

(b) The ev-
idence that
the tool is not
dropped and
the material
is new (Age
is new), de-
creased our
belief on the
damage to 1%.

Figure 3: Changing of believes on BNs, when new evidences arrive.

In SHM systems many classifiers have been used to detect damages in laminated composite
materials, e.g. neural network. BNs are powerful tools for knowledge representation and inference
under uncertainties. Nevertheless, they are not considered very well as classifiers in SHM systems.
Naive-bayes is one of the BNs classifiers that surprisingly can outperform many sophisticated
classifiers on data sets where the features are not strongly correlated.

3 Naive-bayes Classifier in SHM

Recently, the state of the art in supervised learning has shown that simple Naive-bayes is surpris-
ingly a competitive classifier and can outperform many BNs classifiers (e.g. C4.5), when working
on data sets where the features are not strongly correlated. It has a strong assumption that all
variables in the network are independent of the classification variable (Figure 4). It is very easy to
build a Naive-bayes network structure, it does not require a structure learning algorithm.

The amplitudes shown in Figure 5 represent voltage amplitudes of Lamb-waves produced and
collected by PZT sensors and actuators mounted on the surface of quasi-isotropic graphit/epoxy
laminates. The first specimen is a control unit (laminate without damage), the rest of the specimen
contain artificial damages. These damages are delamination, crack, and hole. The figure shows
that sound waves behave differently when passing through the laminate without and with damage,
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Figure 4: The graph shows a Naive-bayes for damage detection by using amplitudes of waves.

and every damage produces differing amplitudes. Amplitudes like these ones with many cases
and different kind of damages can be used to learn the conditional probability tables of variables
(P(Amplitudei ‖ Damage) in the network. Ultimately, the model can be used to predict the dam-
ages in laminated composite materials with the highest posterior probability. The probabilities of
the damages are determined by entering the new evidence obtained from the amplitudes of the new
case to the network.

(a) Without damage
(cronrol).

(b) Delmination. (c) Crack. (d) Hole.

Figure 5: Time (microseconds) trace of voltage amplitudes collected from quasi-isotropic
graphit/epoxy laminates, one without damage and the rest with damages.

The amplitudes shown in Figure 5 were generated by using a constant interval of time (mi-
croseconds). For every laminate a set of 600 amplitudes collected. If all of these amplitudes
were used as variables on the damage detection model, the model would be overwhelmed, com-
plicated, and its accuracy might slightly be decreased. Different techniques have been adopted
for feature subset selections to decrease the size of the data and increase the accuracy. Some of
these techniques extract the peaks of the amplitudes as feature subsets, but it is very difficult to
be sure whether these peaks can be representative to the whole wave. The rest of the techniques
have different kind of limitations and disadvantages. So as to overcome some of these limitations
and tackle some of these disadvantages, the f -folds feature subset selection algorithm has been
developed.
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4 f-folds Feature Subset Selection Algorithm

The amplitudes in Figure 5 have been collected by using a constant interval of time (microseconds).
A different data set might be acquired, if the interval value had been changed. If it had been
assumed that the interval was increased 10 times more than the original one, then the original
amplitudes would be divided into 60 folds (10 amplitudes in each fold). In this case 10 different
data sets would be formed each with 60 amplitudes. The amplitudes included in each set depend
on the first amplitude selected from the first fold, if the first amplitude was the first to be included,
then the first amplitudes in other folds would be included to the data set, if the second one was the
first one to be included, then the seconds in all other folds would be included in the data set, and
etc.

Different wave forms can be extracted from these data sets, which some of them produce
waves with similar shapes (Figure 6). The data sets with similar wave shapes can be grouped or
clustered together and the mean values of every cluster can be considered as representatives of
the cluster (the maximum and minimum values can also be considered). The feature extracted
from these data depends on the number of folds (f ), the number of amplitudes (n), and wether
the maximum and minimum values included or not. This notion has been utilized and encoded as
f -folds feature subset selection algorithm (Algorithm 1) to extract features from waves for damage
detection in laminated composite materials. In this paper, it has been assumed that all of these data
sets represent one data set where each data set is included as a separate record.

Algorithm 1 (k-folds feature subset selection algorithm)
Input:

Amps = amp1, amp2, . . ., ampn (Amplitudes to be clustered).
k (number of clusters).
f (number of folds).

Outputs:
Means = {m(c1), m(c2), . . ., m(ck)}
Maxs = {max(c1), max(c2), . . ., max(ck)}
Mins = {min(c1), min(c2), . . ., min(ck)}

procedure Clustering
1. Divide Amps into f folds (fold(1), fold(2), . . ., fold(f)),
where |fold(1)| = |fold(2)| = . . . = |fold(f)|
2. Create a new data set NewAmp = nAmp(1), nAmp(2), . . ., nAmp(m),
where ∀A = fold(k)i, 1 ≤ i ≤ m, and1 ≤ k ≤ f, A ∈ nAmp(i)
(the number of elements in each fold is m = n / f).
3. Implement a clustering algorithm (e.g. k-means) on NewAmp, to return k clusters.
4. Return the mean, maximum, and minumum values of the clusters.

The input to the f -folds feature subset selection algorithm is a set of n amplitudes ( Amps =
amp1, amp2, . . ., ampn). In step 1 the algorithm divides the data set into f folds (Algorithm 1).
All folds contain the same number of m amplitudes, where m = n / f. In step 2 the algorithm
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forms a new set of data containing m records by assigning the amplitudes with the same index in
all folds to the data set as one record (e.g. the first amplitudes in all folds form the first record and
so on). This creates the data set NewAmp (nAmp(1), nAmp(2), . . ., nAmp(m)). The number of
variables in each record is f (the number of folds). In step 3 the algorithm implements a clustering
algorithm (e.g. k-means algorithm or EM algorithm) on NewAmp to divide their instances into
k clusters. Since each record has f variables, the algorithm returns f mean values, f maximum
values, and f minimum values of each cluster. These values will be considered as representatives
to the clusters and when combined together they can replace the original data set. For example, if
we have 100 instances in the cluster we use only 3 instances (means, maximums, and minimums).
The total number of the variables (t) in each damage type will be reduced to 3 × f × k, when the
means, maximums, and minimums of the clusters are considered. And it will be reduced to f ×
k, if only the means are considered. The values of f and k must be determined by the user such
that t � n, which believed to decrease the variables to a minimum value that highly increase the
accuracy of the model and simplify it.

5 Experiments and Results

The experiments were 25 cm × 5 cm rectangular [90/ ± 45/0]s quasi-isotropic laminates of the
AS4/3501-6 graphite/epoxy system. Three PZT piezoceramic patches were mounted on the surface
of each specimen. The PZT was cut into 2 cm × 0.5 cm patches so that the longitudinal wave would
be favored over the transverse one, and three patches were used on each specimen to actuate and
accurately measure the transmitted and reflected waves. The first channel, which was served as the
trigger for all of the channels, was connected to the output channel and actuating PZT, two others
were connected to the sensing piezoceramic patches to the specimen to serve as a control channel
in order to zero out drift. A few shapes fo piezoceramic patches were used to produce Lamb waves,
and as expected waves propagated parallel to each edge, i.e. longitudinally and transversely for a
rectangular patch and circumferentially from a circular piezo.

Various types of damages were introduced to the specimens. The groups of the specimens were
formed by:

1. Drilling 6.4 mm diameter holes into the center of each specimen as a stress concentration.

2. Compressively loading in a four-point bending fixture until audible fiber fracture damage
was heard.

3. Cyclically loading in the previous fixture for 2000 cycles as 80% of this load to create matrix
cracks.

4. Using a thin utility blade to cut a 5 cm × 2.5 cm slot in side to form delamination.

5. Using a Telfon strip cured into the center mid-plane of the laminate to form a delmaination.
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An x-ray radiograph was taken for every specimen after introducing the damages. The radi-
ographs were taken using a die-penetrant to help document the type, degree, and location of the
damage. Lamb waves were propagated to the specimens by using 15 and 50 KHz frequencies.

Everyone of these data sets were divided into different number of f folds (3 ≤ f ≤ 10) and a
subsets of data were created from these folds for every data set. When the graphs of the subsets of
every data set were plotted, there were many subsets showed similar shape of graphs as shown in
Figure 6. This let us to believe that the subsets of the data set can be divided into clusters, where
the means of these clusters can be used as representatives to these clusters for damage detection.

(a) (b)

(c) (d)

(e) (f)

Figure 6: The figures show the similarity of wave shapes of the data sets created by dividing wave
of 600 amplitudes into 10 folds.

6 Conclusions and Future Work

Bayesian networks in general and Naive-bayes in specific are a powerful formalism for reason-
ing under uncertainty that can be employed as classification techniques for damage detection in
laminated composite materials. When using waves for damage detection in laminated composite
materials, subset of features can be selected by dividing the amplitudes of the wave into folds,
form new data sets, applying a clustering algorithm in these data sets, and the mean values of these
clusters with or without the maximum and minimum values of the amplitudes of the clusters can
be used as feature subsets for the damage detection.

In this paper, the implementation of Bayesian network and Naive-bayes as classification tech-
niques and the f -folds feature subset selection algorithm for damage detection in laminated com-
posite material have been shown theoretically without enough experiments, only a limited exper-
iments for the f -folds algorithm. In the future, we are planning to conduct experimental test to
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determine the effectiveness of these techniques, and to determine their accuracy. We plan also to
develop a technique to automatically determine the number of folds and the number of clusters
from the data set.
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