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Abstract

Reliable failure detection and prediction in laminated composite materials are critical for
the utilization of these materials. There are many quantitative techniques that have been suc-
cessfully researched and implemented for such kind of failure detection and prediction. Most
of these techniques are based on non-destructive methods for data collection and quantified by
using neural networks for prediction and detection. In this paper a review on failure detection
and prediction on laminated composite materials by using neural networks is presented. The
non-destructive techniques considered are limited only to natural frequencies, electric con-
ductivity, and lamb waves. Initially, the paper gives a brief introduction to every technique
followed by summaries and evaluations for some selected works related to the technique.

1 Introduction

In recent years, there has been a rapid growth in studying and using laminated composite materials
(LCMs) in all types of engineering structures (e.g. aerospace, automotive, off-shore, underwater
structures, medical prosthetics, and sports).LCMs are fabricated by stacking plates or plies of
composite materials together to provide materials with superior mechanical properties over con-
stituent counterparts (e.g. materials with high strength and low weight). However, in practical
situations, various cases of material failures or damages may occur during fabrication processes
or in-services. The failure process ofLCMs is quite complex, involving both intralamina damage
mechanisms (e.g. matrix cracking and fiber fracture) and interlamina damage (e.g. delamination
between plies and debonding between fibers and matrix). For example, in a fiber reinforced plas-
tic laminate (FRP), a delamination may occur between plies and propagate, eventually, leading to
catastrophic failure of the structure. This may happen due to a tool dropped during maintenance, a
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bird or hail strike in plain flight, runway debris striking during takeoff or landing, or anything else.
Such delamination may go undetected during testing and lead to catastrophic damage in the future
[1, 2].

Detection and prediction of failures inLCMs are complex issues for visual inspections and
need not only rational techniques of analysis, but also techniques to classify the failures by pre-
dicting their sizes, shapes, and locations. The presence of such failures produce changes in physical
properties of the material, which may decrease the system reliability by decreasing the material’s
strength and stiffness [3]. Non-destructive evaluation (NDE) or non-destructive testing (NDT) is
defined as a technical method to inspect materials for failures without destroying them (the two
termsNDE andNDT are used interchangeably in this paper).NDE is similar to a shopper, when
uses smell to specify the ripeness of a peach. TraditionalNDEapproaches (e.g. natural frequencies,
C-scanning, electric conductivity, optical conductivity, acoustic emission, and lamb waves [1, 3–
5]) were applied as operator-dependent, subjective, and qualitative methods. These approaches
were widely accepted in major engineering communities until doubts have been raised and intensi-
fied concerning the compromise between detection precision and practical reasonability that these
methods can offer [6]. Generally, qualitative approaches are not enough to achieve good failure
prediction or detection in many cases, (e.g. failure detection in three-dimensional composite struc-
tures with non-negligible interlaminar position) and there is a real need for quantitative approaches
so as to predict such kind of failures. This still remains a challenge to the researchers due to
the absence of efficient prediction approaches. Fortunately, neural network (NN) is a quantitative
approach that is widely employed for pattern recognition, classification, function approximation,
signal processing, and system identification. Neural networks (NNs) have demonstrated an uncon-
troversial capability for complex damage detection. A combined computational mechanics with
NNshas been extensively used to predict failures in laminated composite materials [7].

In this paper the failure prediction and detection inLCMs usingNN are reviewed. Initially,
general description and different types ofNN are presented. Then a summary of previous work
of some selected topics, which useNN as a prediction or detection method of failures inLCMs is
given.

2 Neural Networks

Neural network (NN) is a technique in artificial intelligence, like expert systems, genetic algo-
rithms, fuzzy logics, and Bayesian networks that simulates a biological brain. It has been widely
used in different research areas like medicine, business, and engineering. It has been successfully
implemented in many applications, e.g. speech recognition, diagnosis of hepatitis, recovery of
telecommunications from faulty software, image recognition, and detection of failures in lami-
nated composite materials. The popularity and success of theNN in modeling non-linear problems
and its robustness for noisy environment make it an ideal choice for such kind of applications
[8–10].
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The purpose of anNN is to extract patterns and detects trends from complicated or imprecise
data that are too complex to be noticed by either humans or other computer techniques.

There are many different structures, training procedures, and testing procedures forNNs. But
generally, anNN consists of potentially large number of simple processing elements known as
nodesor neurons. A neuron influences other’s behavior through a weight. Each neuron simply
computes a nonlinear weighted sum of its inputs, and transmits the result over its outgoing con-
nections to other neurons [11]. The behavior of the network depends largely on the interaction
between these neurons. The network consists of severallayersof neurons, these areinput layer,
hiddenlayer or layers, andoutputlayer as shown in Figure 1. The input layer takes the input data
and distributes them to the hidden layer(s) (the user cannot see any of the input or output of a
hidden layer). The hidden layers do all the necessary computation and transmit the results to the
output layer, which shows the final result to the user.

Figure 1: A simple neural network with 3 layers (input, hidden, and output)

The network is not strictly programmed, but passes through important information phases
known as training and testing phases. In the training phase the network is given many cases of
inputs along with the true outputs. The system learns by adjusting the weights of relative im-
pact of inputs to outputs, and trying many combinations of weights until a good fit to the training
cases is obtained. Then the resulting network can be used to evaluate future cases, which yields a
classification results [12, 13].

NNsare characterized by their structure, weights, and the training technique used to specify
their weights.NNscan be classified into several types based on the learning technique used, and
the selection of a type is mainly dependent on the problem to be solved. These networks can take
several forms, such as feed-forward (FF) NNs , backward propagation (BP) networks, Kohonen
networks, radial basis function networks, Hopfield networks, and Elman networks [14, 15].

In FF NN, the activations of the input units are set and then propagated through the network
until the values of the output units are determined.
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A typical BPnetwork has at least one hidden layer. There is no theoretical limit on the number
of hidden layers, but typically there is just one or two. Some work has been done, which indicates
that a maximum of four layers (one input layer, two hidden layers, and one output layer) are
required to solve problems of any complexity [16]. However, it has been shown that it is possible
to model many systems with a single hidden layer [17]. ABP calculates the weight values by
iterative steps [2, 16, 17]:

• One input case is applied to the network and the network produces some output based on the
current weights of the network. Initially, the weights are assigned at random.

• The calculated output is compared to the correct output and the error of the output is calcu-
lated.

• The error value is propagated backwards to the network and the weights are adjusted in each
layer according to this error.

The whole process will be repeated for all training cases many times until the overall error
drops to a zero value or gets lesser than a pre-specified threshold. Then the network passes through
testing process to determine the accuracy of the network before the deployment. TrainedNN can
be treated as an expert in the category of information provided to analyze. This expert can then be
used to predict the output of new given situations of interest.

Some of the main advantages ofNN can be summarized as follows [18]:

1. Adaptive learning: anNN can adapt itself to predict unseen cases based on the data given for
training.

2. Self organization and representation: anNN can form its own organization or representation
of the information it receives during the learning process.

3. Parallel computation: anNN computations may be carried out in parallel, and specific hard-
ware devices have being manufactured for this purpose.

4. Fault tolerance: partial destruction of a network leads to the corresponding degradation of
performance, but some network capabilities may be retained, which may still give acceptable
results.

Disadvantages ofNNs include its black box nature, greater computational burden, and the
empirical nature of model development.

3 Previous Work

All of the NDE techniques, which used withNNsto quantify the detection and prediction of failures
in LCMshave advantages and disadvantages in terms of accuracy, expense, and level of instrumen-
tation required. Most of them require sensing of strains and acoustic waves by using embedded
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optic fibres or transducers mounted at the material surfaces [19]. Lamb wave (LW) methods have
re-emerged as one of the most reliable techniques that are capable of propagating relatively long
distances inLCMsplates [20, 21]. Alternatively, electric conductivity is also widely implemented
for the same purposes. This method has a long history in geology and biomedical applications in
which an electric current is applied and the electric potential is recorded at monitoring electrodes
around the area of study. The successfulNDT techniques for small laboratory specimens, such as
radiographic detection andC-scanning, are impractical for large components. Natural frequency
methods are simple to implement on structure of any size. Structures can be excited by exter-
nal shakers or embedded actuators, and embedded strain gauges or accelerometers can be used to
monitor the structural dynamic responses [22].

It is very difficult if not impossible to review all of theNDE techniques in a single paper.
Therefore, in this paper the review is restricted to summarize only some selected topics which,
considered the implementation of natural frequencies, electric conductivity, and lamb waves as
non-destructive techniques.

3.1 Natural Frequencies

The presence of damage inLCMscauses changes in the physical properties of the material, which
does not affect the mass distribution but reduces the stiffness of the structure and leads to changes
in modal parameters (notably frequencies, mode shapes, and modal damping factors). It has also
been shown that natural frequencies are sensitive to the size, location, and shape of the damage such
as delaminations in structural components [23–26]. Therefore, natural frequencies can be used as
indicative parameters of internal damages. Modal analysis may be used to quantify internal defects
through shifts in the natural frequencies of a structure [23, 27–29].NNssimulations can accurately
and robustly respond to dynamic characteristics ofLCM structures and they can be used to predict
the damages ofLCMs. TheNN uses natural frequencies as input and the corresponding damage
information (location, size, and shape) as an output to the network [30–33].

Smart instrumentation has been extensively tested to specify damage inLCMsusing permanent
sensors as monitoring or field evaluation systems. Fiber optic sensors are attractive candidates for
smart composite applications. They may also be incorporated into a composite element since their
temperature tolerances and small sizes are compatible with composite processing and structure.
Optical sensor data is commonly processed withNNs [34]. Watkin et al. [35] usedBP NN and
fiber optic vibration sensors to predict different sizes and locations of delaminations in composite
beams. The fiber optic sensors measured the first five modal frequencies for healthy (undelami-
nated) and delaminated cantilever beams made of eight-ply glass/epoxy composite laminates. The
delamination size and location prediction resulting from the network simulation had an average
error of5.9%and4.7%respectively. Table 1 shows the experimental sizes, the predicted sizes, and
the percentage differences between them. The results might be improved by using training data
from more accurate analysis. Further studies are needed so as to obtain an efficient health moni-
toring capability in composite structures with integral fiber optic sensors andNN. The fiber optic
outputs may also be fed directly into aNN to provide accurate information for complex structures.
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Table 1: A comparison between true and predicted delamination sizes by usingNN [35].
True Sizes NN Sizes Differences

(cm) (cm) (%)
1.27 1.29 1.2
2.54 2.81 10.6
3.81 4.22 10.7
5.08 5.40 6.3
6.35 6.41 0.9

Chakraborty [3] introduces an approach that predicts the presence of embedded delamination
(in terms of location, shape, and size) in fiber reinforced plastic composite laminates by usingBP
NN with 3 layers (input, hidden, and output). The network has been tested to predict the presence
of delamination along with its size, shape, and location. It has been observed that the network
can learn effectively the size, shape, and location of a delamination embedded in the laminate and
can predict reasonably well when tested with unknown data set. Simulated data has been used for
training and testing the network, but the approach has not been tested by using real life data sets so
as to specify its actual efficiency.

Crispin and Gerard [36] proposed an approach that combines a simple but sensitive optical
fiber vibration sensor, a fast Fourier transformation (FFT) pre-processing stage, andBP multi-
layer perceptronNNsto detect damage in carbon-fiber reinforced polymers (CFRP). In this study
two NNswere used, which were receiving data from four sensors fixed in the composite plates and
using these information to specify the location of the damages on the plates. One network was
responsible for specifying the location of the damages from theFFTsof strain and the second one
for finding their magnitudes. The system detected the damages with an average error of7.08%,
when data sets with simulated damages were used. In the later work, the composite panel is fitted
with a number of ribs and stringers to simulate a real load-bearingCFRP skin structure. This
made the task of loading impacts harder but a92%success was achieved. The system was trained
successfully to differentiate between test transient signals fromCRFPplates with four levels of
damages and with three degrees of simulated impact damage.

3.2 Electrical Conductivity

The implementation of natural frequencies as indicative parameters for failure detection inLCMs
by usingNN has already been articulated. But sometimes it may happen that the measurement of
the frequencies is very difficult due to some limitations in hardware and connectivity associated
with the sensors (e.g. space and bandwidth restrictions). Another approach to identify delamina-
tions in LCMs is by embedding fiber-optic strains into them, so as to measure the strain distrib-
ution [38, 39]. Unfortunately, this may reduce the static and fatigue strengths, and increase the
total weight of the material. In addition, the optical fiber sensors and the sensing systems are very
expensive. These guide to another form of smart technology to identify failures inLCMs.
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Some of the materials used in theLCMs are electrical conductors, e. g. carbon and graphite
fibers. Therefore, the measurement of the electrical resistance appears to be a valuable technique
for the detection of different types of failures inCFRPlaminates, which does not cause reduction of
static strength or fatigue strength. Moreover, the electric-potential method does not cause increase
in weight. This method has been adopted by many researchers, e.g. Irving and Thiagarajan [40],
and Abryet al. [41]. In the case ofCFRP, the carbon fibers are not only used as a reinforcement
material, but also as sensors of damage detection and predictions [42]. Dae-Cheol and Jung-
Ju [42] have investigated this kind of damage detection by mounting electrodes on the surface
of the CFRP structures. They have showed that the measured stiffness change have a similar
trend as the electrical resistance change during fatigue tests. The electrical resistance has showed
gradual increase while the stiffness was decreasing and showed an unexpected change when the
final fatigue stiffness changed suddenly. They have usedNN to investigate the relation between the
electrical resistance damage parameter, fatigue life, and stiffness reduction, which showed good
relationship (Figure 2).

Figure 2: Comparison of fatigue life and resistance damage parameter predicted by neural network
and experimental results [42].

Figure 2 shows the relationship between electrical resistance and fatigue life using anNN. The
input node of the neural network is the electrical resistance damage parameter and the output node
is fatigue life of stiffness reduction. Three stress levels, 70%, 60%, and 50% of the average static
ultimate strength were selected. The error convergence of the network relies on the structure of the
hidden layer. In this case, it shows better results with two hidden layers than with one hidden layer.
About 11 to 18 number of experimental data were used as learning input data. After the learning
step, a graph very similar to the experimental results were acquired. Thus, it is possible to predict
specimen damage by monitoring electrical resistance using a neural network.

Graphite fibers in graphite/expoxy laminated composite are also very good electric conductors
and the epoxy matrix is an insulator. Generally, electric conductivity is very high in the direction
of the fibers and much lower in the transverse direction of the fibers or may vanish under normal
conditions [43]. When a delamination grows between plies in a graphite/expoxy composite, the
electrical resistance increases in the composite. Therefore, delaminations can be detected by cal-
culating the variation of electric resistance in this kind of composites. Todoroki andet al. [44–47]
have shown that electrical resistance change method using response surfaces is very effective in
identifying delaminations in laminated composite materials both experimentally and analytically.
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They have proposed a schematic representation of a delamination monitoring system (Figure 3).

Figure 3: Schematic representation of delamination identification method using electric resistance
change method with response surfaces [44].

In Figure 3, multiple electrodes are mounted on the surface of a specimen with equal spaces
from each other. All of these electrodes are placed on a single side of a specimen. Usually it is
impossible to place electrodes and lead wires outside of the aircraft structures. Mounting of elec-
trodes on the singe side surface represents modeling of electrode attachment in thin aircraft shell
type structures. Electrical resistance change of each segment between electrodes is measured for
various cases of location and size of delaminations. Using the measured data, the relationships
between electrical resistance changes and delaminations (location and length) are obtained using
the response surfaces. The main draw back identified for this method is the high number of exper-
iments that must be performed to obtain sufficient number of sets of electrical resistance changes.
The response surface is similar toNNs and it is a widely adopted tool for quality engineering
fields. Response surface methodology comprises regression curve fitting to obtain approximate
responses, design of experiments to obtain minimum variances of responses, and optimizations
using approximated responses [46, 47].

3.3 Lamb Waves

Lamb wave (LW) was first introduced by Sir Horace Lamb in1917[48]. LW is one of the widely
used techniques inNDE for failure detection and prediction inLCMs. LWsare acoustic waves
that can be launched into relatively thin solid plate with free parallel surfaces and are also known
as plate waves [49]. There are different kinds of techniques used to propagate and receiveLWs.
These techniques have been implemented in a variety of configurations, including the use of single
purpose devices (e.g. transducers) that use separate actuators (sources or transmitters) and sensors
(receivers) to propagate and monitor the propagated waves and/or reflected waves individually,
and multipurpose transducers in which, a single transducer is used to actuate and sense the waves
simultaneously. The simplest methods of the multipurpose transducers use piezoelectric transduc-
ers, which can be used as transmitters or sensors. The single purpose transducers are like laser
transmitters and optical fiber sensors. Each of these techniques has its own unique properties and
different analytical complexity in detecting and predicting specific types of failures in these ma-
terials. TheLWsgenerated by a transmitter propagate through the material and reflected by the
failures and the surfaces of the material back to the sensors. The signals reflected to the sensors
contain some information (e.g. size, location, and orientation) about the failures and they can be
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used to test the structural integrity of the material.LWsexcite the whole volume of the structure
along the line between the transmitter and receiver. They can propagate over long distances. How-
ever, their dispersive nature and the existence of many modes simultaneously can complicate the
interpretation of the acquired signal [49].

The first implementation ofLWsfor damage detection was introduced by Worlton in1960[50].
He investigated the dispersion curves of aluminum and zirconium to describe analytically the char-
acteristics of the various modes that would pertain to nondestructive testing applications. During
the late1980and1990s, work began on the application ofLW to composite materials [4].

Many researchers have adopted theLWstogether withNNsas a technique for failure detection
and prediction inLCMs. Su and Ye [51] have demonstrated aLW propagation-based quantitative
identification scheme for delamination inCFRPcomposite structures by using a multi-layerBP
NN. An Intelligent signal processing and pattern recognition package was developed to perform
the identification, where aBP was trained using spectrographic characteristics extracted from ac-
quired LW signals. Excellent quantitative diagnosis results for damage parameters in terms of
presence, location, geometry, and orientation were achieved. Although a certain amount of time
is inevitably spent on the preliminary off-line development of theNN, the researchers have not
tested the developedNN and the structural health monitoring system to diagnose an actual failure
performed instantly online.

Yuan and Wang [4] have introduced a damage signature based on wide-bandLW for on-line
delamination and impact detection monitoring system applied to honeycomb sandwich andCFRP
structures. The damage signature has been introduced together with a KohonenNN to determine
the presence and extent of damage in the composites, while diminishing the influence of different
distances between the transmitters and sensors. They have showed the efficiency and the reliability
of the proposed method for the different types of the materials used, which suffer various levels of
damage.

4 Conclusions

Combined computational techniques with Neural network as a quantitative method and natural
frequencies, electrical conductivity, and lamb waves as non-destructive methods have been exten-
sively used to identify failures in laminated composite materials. Neural networks have demon-
strated robust and uncontroversial capabilities for complex failure detection and prediction in lami-
nated composite materials with small errors. These failures include delamination, matrix cracking,
fiber fracture, and debonding in terms of size, location, and shape.
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