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Gaussian–Hermite moments are orthogonal moments widely used in image processing and computer
vision applications. Similar to the other families of orthogonal moments, highly computational demands
represent the main challenging. In this work, an efficient method is proposed for fast computation
of highly accurate Gaussian–Hermite moments for gray-level images. The proposed method achieves
the accuracy through the integration of Gaussian–Hermite polynomials over the image pixels. To
achieve the efficiency, the symmetry property of Gaussian–Hermite polynomials is employed where
the computational complexity is reduced by 75%. Fast computational methodology is employed to
significantly accelerate the computational process where the 2D Gaussian–Hermite moments are treated
in a separated form. Numerical experiments are performed where the results are compared with the
conventional method. The comparison of the obtained results clearly ensures the efficiency of the
proposed method.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Moments and functions of moments have been widely used in
different applications of pattern recognition, image processing and
computer vision [1–6]. Geometric moments and their translation,
scaling and rotation invariants were firstly introduced and imple-
mented by Hu [7]. In the early 80’s of the last century, Teague [8]
introduced the concept of orthogonal moments, where continuous
orthogonal polynomials are used to generate moments for image
analysis. Legendre, Zernike and pseudo Zernike are examples of
continuous orthogonal moments. Teh and Chin [9] showed that, or-
thogonal moments could be used to represent an image with the
minimum amount of information redundancy.

Gaussian–Hermite moments represent another kind of con-
tinuous orthogonal moments. These moments were firstly intro-
duced by Shen [10]. Shen et al. [11] compared the performance of
Gaussian–Hermite moments as orthogonal moments and the geo-
metric moments. Later, Wu and Shen [12] discussed the properties
of the orthogonal Gaussian–Hermite moments and their applica-
tions. Gaussian–Hermite moments are used in detection of the
moving objects [13–15], fingerprint segmentation and classifica-
tions [16–18], medical image segmentation [19], stereo match-
ing [20], image denoising [21], iris recognition [22] and license
plate character recognition [23]. Recently, Yang and his co-authors
[24] derived the rotation and translation invariants of Gaussian–
Hermite moments. It is clear that, the computational process of

E-mail address: k_hosny@yahoo.com.

rotation and translation Gaussian–Hermite moment invariants is
dependent on the computation of the original Gaussian–Hermite
moments.

The conventional computation of continuous orthogonal mo-
ments includes numerical approximation which results in by re-
placing integration by a truncated finite summation. Liao and
Pawlak [25] attempted to overcome this problem by using a mod-
ified approximation method. Recently, exact computation of mo-
ments by integrating their polynomial functions over image pixels
is an elegant approach proposed by Hosny for efficient and accu-
rate computation of geometric moments [26], Legendre moments
[27], radial moments [28], and Zernike moments [29,30].

This paper proposes a fast method for accurate computation
of orthogonal Gaussian–Hermite moments for binary and gray-
level images. The 2D Gaussian–Hermite moments are computed by
applying the approach of mathematical integration of Gaussian–
Hermite functions over digital image pixels where the approxi-
mation errors are avoided. The symmetry property of Gaussian–
Hermite functions is employed to achieve a significant reduction in
the computational process. The conducted numerical experiments
clearly show the efficiency of the proposed method.

The rest of the paper is organized as follows: In Section 2,
a concise presentation of orthogonal Gaussian–Hermite moments
and their approximation computation is given. In Section 3, a de-
tailed description of the proposed method for computation of ac-
curate Gaussian–Hermite moments is presented. Section 4 is de-
voted to numerical experiments and results. Conclusion is pre-
sented in Section 5.

1051-2004/$ – see front matter © 2012 Elsevier Inc. All rights reserved.
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2. Gaussian–Hermite moments

Hermite polynomials are orthogonal polynomials defined over
the domain (−∞,∞) where the Hermite polynomial of degree p
is defined as follows [31]:

H p(x) = (−1)pex2 dp

dxp

(
e−x2)

(1)

Such polynomial could be defined in an explicit expansion as fol-
lows:

H p(x) = p!
� p

2 �∑
m=0

(−1)m 1

m!(p − 2m)! (2x)p−2m (2)

where the operator �p/2� is equal to (p − 1)/2 if p is odd other-
wise equal to p/2. The recurrence relation of Hermite polynomials
is:

H p+1(x) = 2xH p(x) − 2pH p−1(x) (3)

where p � 1 and the first two polynomials are H0(x) = 1 and
H1(x) = 2x. The orthogonality relation of Hermite polynomials
with respect to the weight function, e−x2

, is defined as follows:

∞∫
−∞

e−x2
H p(x)Hq(x)dx = 2p p!√πδpq (4)

Based on Eq. (4), the normalized Hermite polynomials are defined
using original Hermite polynomials as follows:

Ĥ p(x) = 1√
2p p!√π

e
(− x2

2

)
H p(x) (5)

The normalized Hermite polynomials satisfy the following orthog-
onality property:

∞∫
−∞

Ĥ p(x)Ĥq(x)dx = δpq (6)

Replacing x by x/σ , Gaussian–Hermite functions are defined using
the normalized Hermite function as follows:

Ĥ p(x/σ ) = 1√
2p p!σ√

π
e
(− x2

2σ2

)
H p(x/σ ) (7)

The parameter σ is the standard deviation. Gaussian–Hermite mo-
ments of order (p + q) for the image intensity function, f (x, y), is
defined as:

Mpq =
∞∫

−∞

∞∫
−∞

f (x, y)Ĥ p(x/σ )Ĥq(y/σ )dx dy (8)

For a digital image of size M × N , the approximated Gaussian–
Hermite moments are computed by using the following formula
[32]:

M̃pq =
M−1∑
i=0

N−1∑
j=0

f (xi, y j)Ĥ p(xi/σ )Ĥq(y j/σ )�x�y (9)

In this formula, the double integration in Eq. (8) is replaced by
double summations which results in numerical error. Based on
the principles of mathematical analysis, summations are equiva-
lent to integrals as the number of sampling points tends to in-
finity which is impossible in the limited computing environment.
The numerical error increased as the number of sampling points

Fig. 1. Input image defined in the square [−1,1] × [−1,1].

decreased. Also, this error increased as the order of moments in-
creased. Therefore, numerical instabilities could be encountered
when the moment order reaches a cretin value. The optimum way
to overcome this problem is the accurate evaluation of the double
integration in Eq. (8).

3. The proposed method

Direct computation of Gaussian–Hermite moments by using
Eq. (9) is impractical where two major challenges were raised. In-
accurate computed moments represent the first challenge while
the highly computational costs represent the second challenge.
The proposed method aims to overcome these two problems by
presenting a fast and exact-like computation of Gaussian–Hermite
moments.

To achieve these goals, the input digital image of size M × N is
defined as an array of pixels. Centers of these pixels are the points
(xi, y j), where the image intensity function is defined only for this
discrete set of points (xi, y j) ∈ [−1,1] × [−1,1] as displayed in
Fig. 1. �xi = xi+1 − xi , �y j = y j+1 − y j are sampling intervals in
the x- and y-directions respectively. In the literature of digital im-
age processing, the intervals �xi and �y j are fixed at constant
values �xi = 2/M , and �y j = 2/N respectively. The points (xi, y j)

are defined where xi = −1 + (i − 0.5)�x; y j = −1 + ( j − 0.5)�y;
i = 1,2,3, . . . , M , and j = 1,2,3, . . . , N .

3.1. Accurate Gaussian–Hermite moments

By substituting Eq. (2) in (7), the Gaussian–Hermite functions
could be rewritten as follows:

Ĥ p(x/σ )

= 1√
2p p!σ√

π
e
(− x2

2σ2

) � p
2 �∑

m=0

(−1)m p!
m!(p − 2m)! (2x)p−2m (10)

Rearrange the mathematical terms in the right-hand side, Eq. (10)
could be rewritten as follows:

Ĥ p(x/σ ) = C p(σ )

� p
2 �∑

n=0

B p,m

(
x

σ

)p−2m

e
(− x2

2σ2

)
(11)
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where the coefficients C p(σ ) and B p,m are defined as:

C p(σ ) = 1√
2p p!σ√

π
(12)

B p,m = (−1)m p!
m!(p − 2m)! (2)p−2m (13)

It is clear that, both C p(σ ) and B p,m are image independents,
therefore, the values of these coefficients could be pre-computed,
stored and recalled whenever needed to avoid any excessive com-
putational demands. For efficient computation, these coefficients
are computed recursively.

Based on the theory of moment computation [25]; Eq. (8) could
be rewritten as follows:

Mpq = C p(σ )Cq(σ )

M∑
i=1

N∑
j=1

hpq(xi, y j) f (xi, y j) (14.1)

where

hpq(xi, y j) =
xi +

�xi
2∫

xi −
�xi

2

y j+ �y j
2∫

y j− �y j
2

Ĥ p(x/σ )Ĥq(y/σ )dx dy (14.2)

Based on the foundations of mathematical analysis, Eq. (14.2)
could be rewritten in a separable form as follows:

hpq(xi, y j) =
( xi +

�xi
2∫

xi −
�xi

2

Ĥ p(x/σ )dx

)( y j+ �y j
2∫

y j− �y j
2

Ĥq(y/σ )dy

)
(15)

By using the definition of Gaussian–Hermite function in (11);
Eq. (15) is rewritten as follows:

hpq(xi, y j) = IXp(xi)IYq(y j) (16)

where

IXp(xi) =
(

C p(σ )

� p
2 �∑

m=0

B p,m

σ p−2m

( xi +
�xi

2∫
xi −

�xi
2

xp−2me
(− x2

2σ2

)
dx

))
(17.1)

IYq(y j) =
(

Cq(σ )

� q
2 �∑

n=0

Bq,n

σ q−2n

( y j−
�y j

2∫
y j−

�y j
2

yq−2ne
(− y2

2σ2

)
dy

))
(17.2)

Upper and lower limits of the integration in Eqs. (17.1) and (17.2)
will be expressed as follows:

Ui+1 = xi + �xi

2
, Ui = xi − �xi

2
(18)

Similarly,

V j+1 = y j + �y j

2
, V j = y j − �y j

2
(19)

Accurate computation of the kernels, IXp(xi) and IYq(y j), is the
key point in accurate computation of Gaussian–Hermite moments.
The computation of Eqs. (17.1) and (17.2) includes the computation
of the coefficients C p(σ ) and B p,m , plus the evaluation of the defi-
nite integrals. Since the coefficients C p(σ ) and B p,m are computed
exactly, then, it is concluded that, accurate evaluate of the definite
integrals in Eqs. (17.1) and (17.2) is the key point in accurate com-
putation of the kernels IXp(xi) and IYq(y j). Eqs. (17.1) and (17.2)

are rewritten in a compact form as follows:

IXp(xi) = C p(σ )

� p
2 �∑

m=0

B p,m

σ p−2m
I p,m(i) (20.1)

IYq(y j) = Cq(σ )

� q
2 �∑

n=0

Bq,n

σ q−2n
Iq,n( j) (20.2)

where

I p,m(i) =
Ui+1∫
Ui

xp−2me
(− x2

2σ2

)
dx (21.1)

Iq,n( j) =
V j+1∫
V j

yq−2ne
(− y2

2σ2

)
dy (21.2)

In order to evaluate these definite integrals, the rule of integration
by parts is applied. Both integrals could be simply rewritten in the
following form:

IT (i) =
Ui+1∫
Ui

xT e
(− x2

2σ2

)
dx (22)

where the index T is a non-negative integer; T = 0,1,2, . . . ,Max,
and Max is the maximum order of Gaussian–Hermite moment. The
definite integration defined by Eq. (22) must be accurately eval-
uated for all values of the parameter T . Based on the rule of
integration by parts, a series of mathematical operations are per-
formed to derive a formula for accurate evaluation of the definite
integration defined in Eq. (22). This formula is expressed as fol-
lows:

IT = σ 2
[
(Ui)

T −1e
(− U 2

i
2σ2

)
− (Ui+1)

T −1e
(− U 2

i+1
2σ2

)
+ (T − 1)IT −2

]
(23)

where T � 2; I0 and I1 are known. The implementation of formula
defined by Eq. (23) required the evaluation of the first two defi-
nite integrals, I0 and I1. The first definite integral, I0, is defined as
follows:

I0 =
Ui+1∫
Ui

e
(− x2

2σ2

)
dx (24)

This integration is difficult to be evaluated analytically. So, an ac-
curate numerical integration method could be a good choice. The
composite Simpson’s rule is proved to be very accurate where the
numerical and exact values are almost equal [33]. This rule is rep-
resented by using the following equation:

b∫
a

f (x)dx ≈ h

48

{
17.0

[
f (x0) + f (xL)

] + 59.0
[

f (x1) + f (xL−1)
]

+ 43.0
[

f (x2) + f (xL−2)
] + 49.0

[
f (x3) + f (xL−3)

]
+ 48.0

L−4∑
t=4

f (xt)

}
(25)

Any definite integral of the form
∫ b

a f (x)dx could be evaluated nu-
merically by using composite Simpson’s rule defined in Eq. (25).
All details and the required pseudo code for the implementation
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of this method could be found in [33]. The second required defi-
nite integral, I1, is written as follows:

I1 =
Ui+1∫
Ui

xe
(− x2

2σ2

)
dx (26)

Fortunately, this definite integral could be analytically evaluated by
applying the rules of integration by parts. The definite integration
I1 is exactly computed as follows:

I1 = σ 2
[

e
(− U 2

i
2σ2

)
− e

(− U 2
i+1

2σ2

)]
(27)

By using Eq. (23) in (17) and (16), the set of orthogonal Gaus-
sian–Hermite moments are computed. It is clear that, the kernels
IXp(xi) and IYq(y j) are image-independent; therefore it could be
pre-computed, stored, recalled whenever it is needed to avoid
repetitive computation.

3.2. Computational aspects

Efficient computation of orthogonal moments of an image is
an important target. Direct computation of Gaussian–Hermite mo-
ments is very time-consuming and neither relevant to real time
applications nor big size images. For efficient computation process,
a fast computational algorithm is proposed. This algorithm con-
sists of two main procedures. In the first procedure, the symmetry
property of Gaussian–Hermite polynomials is employed where 75%
of the computational complexity is reduced. In the second proce-
dure, a fast algorithm is implemented to accelerate the computa-
tional process. A detailed description of these procedures could be
found through the following subsections.

3.2.1. Symmetry property
The Gaussian–Hermite polynomials have symmetry properties

in both directions [31]. These symmetry properties are defined as
follows:

Ĥ p(−x/σ ) = (−1)p Ĥ p(x/σ ) (28.1)

Ĥq(−y/σ ) = (−1)q Ĥq(y/σ ) (28.2)

Based on Eqs. (28.1) and (28.2), the absolute values of Gaussian–
Hermite polynomials are the same even the values of x and y
change from negative to positive. Therefore, only one quadrant of
the whole input image is required to compute the whole set of
Gaussian–Hermite moments. The implementation of this symmetry
property saves 75% of the required computational cost. To clarify
this point and help the reader to understand it easily, the values
of x and y are defined only within the range of the first quadrant
(see Fig. 2) where i = �M/2�, �M/2� + 1, �M/2� + 2, . . . , M and
j = �N/2�, �N/2� + 1, �N/2� + 2, . . . , N . The image intensity func-
tion is replaced by the augmented image intensity function which
is defined according to the following equation:

f A(xi, y j) = f1(xi, y j) + (−1)p f2(xi, y j) + (−1)p+q f3(xi, y j)

+ (−1)q f4(xi, y j) (29)

where f1(xi, y j) represents the image intensity function of the
pixel point (xi, y j) in the first quadrant; the other functions
f2(xi, y j), f3(xi, y j) and f4(xi, y j) are the image intensity func-
tions for the corresponding pixel points in the second, third and
fourth quadrants respectively.

Fig. 2. The input image defined with one quadrant using the symmetry property.

3.2.2. Fast computation
The computational complexity of the accurate Gaussian–Hermite

moments using Eq. (14.1) could be significantly reduced by suc-
cessive computation of the 1D cascade. This methodology was
proposed by Hosny in [26] and proved to be very efficient by using
the numerical experiments and the theoretical complexity analy-
sis. Based on the methodology of the 1D cascade, Eq. (14.1) will be
rewritten in a separable form as follows:

Mpq =
M∑

i=� M
2 �

IXp(xi)Yiq (30)

where

Yiq =
N∑

j=� N
2 �

IYq(y j) f A(xi, y j) (31)

3.2.3. Over-whole algorithm
In order to explore the proposed method and make its imple-

mentation more easily, an over-whole algorithm of the executed
code for computing 2D Gaussian–Hermite moments is presented.
The detailed algorithm is designed for a gray-level image of size
N × N and a maximum moment order equal to Max. The imple-
mented algorithm is presented in concise steps as follows:

Step 1. For i = 1 to N + 1.
Create the vectors Ui and V j using Eqs. (18) and (19).

Step 2. For i = 1 to N .

Compute xi = Ui+1 + Ui

2
and y j = V j+1 + V j

2

Step 3. For p = 0 to Max.
Create the vector of the coefficients C p(σ ) using the following

recurrence relations:

C0(σ ) =
√

σ
√

π

C p(σ ) = 1/
√

2pC p−1(σ ), where p � 1
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Fig. 3. House’s gray-level image: (a) noise-free image, (b) noisy image: Salt & Peppers, (c) noisy image: white Gaussian.

Compute the coefficients matrix B pm using the following recur-
rence relations:

B p0 = 2p

B p,m+1 = − (p − 2m − 1)(p − 2m)

4(m + 1)
B p,m

Step 4. For p = 0 to Max & For i = 1 to N .
Create Hermite polynomials H p(x/σ ) of argument (x/σ ) using

Eq. (3) with H0(x/σ ) = 1 and H2(x/σ ) = 2x/σ .

Step 5. For p = 0 to Max & For i, j = 1 to N .
Create the normalized Gaussian–Hermite polynomials Ĥ p(x/σ )

using Eq. (5).

Step 6. For p = 0 to Max.
Compute I0 using Eqs. (24) and (25).
Compute I1 using Eq. (26).
Compute IT with T � 2 using Eq. (23).

Step 7. For p = 0 to Max & For i, j = 1 to N .
Create the kernels, IXp(xi) and IYq(y j), using Eqs. (20.1) and

(20.2).

Step 8. For p = 0 to Max & For q = 0 to Max− p with i, j = 1 to N .
Create the augmented image intensity function f A(xi, y j) using

Eq. (29).

Step 9. For p = 0 to Max & For q = 0 to Max − p with i, j = �N/2�
to N .

Compute Yiq using Eq. (31); then compute the Gaussian–
Hermite moments M pq using Eq. (30).

Based on the description of these steps, an elegant property
could be noticed. All the steps from 1 to 7 are image-independent.
Therefore, all values computed using these steps could be pre-
computed, saved and used whenever needed. This finding makes
the proposed method very useful in real time applications and
very large image databases. Only, the steps 8 and 9 are image-
dependent.

4. Numerical experiments

Different numerical experiments are conducted in order to
prove the validity and the efficiency of the proposed method. The
detailed description of these numerical experiments will be pre-
sented in this section. The performance for the proposed method

is evaluated and compared with the existing methods for comput-
ing Gaussian–Hermite moments. This section is divided into two
subsections.

In the first subsection, the accuracy of the proposed method is
proved by using the aspect of image reconstruction for noise-free
images and images contaminated with different kinds of noise. The
efficiency of the proposed method is discussed in the second sub-
section. CPU elapsed times are used to show the efficiency of the
proposed method where these elapsed times are computed using
both the proposed method and the existing conventional method
[32] in the same computing environment. The CPU elapsed times
are compared. Results of five numerical experiments are used to
ensure the efficiency of the proposed method.

4.1. Image reconstruction

In this section, image reconstruction is used to prove the accu-
racy of the proposed method. Mean Square Error (MSE) between
the original and the reconstructed image is widely used in the
community of image processing and computer vision as a quan-
titative measure of the accuracy. The MSE for a digital image of
size N × N is computed using the following form:

MSE =
∑N

i=1
∑N

j=1( f̂ Max(xi, y j) − f (xi, y j))
2

N × N
(32)

where f (xi, y j) is the intensity function of the original image and

f̂Max(xi, y j) represents the intensity function of the reconstructed
image.

A numerical experiment is performed, where the ‘house’ gray-
level image of size 128 × 128 as displayed in Fig. 3(a) is used with
a maximum moment order ranging from 0 to 40. Fig. 4 shows the
MSE of the proposed method. It is clear that, the MSE decreases
as the moment order increases where the MSE approaches to zero
as the moment order increases. The reconstructed image will be
very close to the original one when the maximum moment order
reaches a certain value.

Noise resistance of Gaussian–Hermite moments is a very desir-
able property. To ensure the robustness of these moments against
the negative effects of different kinds of noise, two numerical ex-
periments are conducted using noise contaminated images where
two kinds of noise are used in these numerical experiments. The
first kind of noise is the ‘salt & pepper’ noise while the second
one is the strong ‘white Gaussian’ noise. The contaminated images
with two kinds of noise are displayed in Figs. 3(b) and 3(c) re-
spectively. The two kinds of noise are added to original noise-free
images using the following Matlab8 statements:
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A = imnoise(A, ‘salt & pepper’, S) (33.1)

A = imnoise(A, ‘gaussian’,m, v) (33.2)

The parameters S , m and v are used to control the amount of im-
age noise. Both noise contaminated images are reconstructed using
Gaussian–Hermite moments of order ranging from 0 to 40. The
plotted curves of MSE for the noise contaminated images are dis-
played in Fig. 4. It would be noted that, the three curves of MSE
are plotted in the same figure for easier comparison.

Generally, the values of the MSE of noisy images are larger
than their corresponding MSE values of noise-free image. As shown
in Fig. 4, the MSE curves of the noise contaminated images ap-

Fig. 4. MSE for the reconstructed gray-level image of House.

proach zero by increasing the moment order. The results of these
experiments ensure the robustness of Gaussian–Hermite moments
against the different kinds of noise.

4.2. CPU computational time

Fast algorithms are desirable in wide rang of image processing
and computer vision applications especially for real time appli-
cations and big size images. These fast algorithms are based on
reduction of computational times. In order to ensure the efficiency
of the proposed method, a number of numerical experiments are
conducted. All of these experiments are performed using Lenova
R4000 Laptop Machine equipped with Intel® Core™ 2 Due CPU
2.66 GHz and 3072 MB RAM and operated by 32 bit Windows
7 professional. The executed code is designed using Matlab8. The
execution-time improvement ratio (ETIR) [29] is used as a crite-
rion to compare the different computational methods. This ratio
is defined as ETIR = (1 − Time1/Time2) × 100, where Time1 and
Time2 are the execution time of the first and the second methods.
ETIR = 0 if both execution times are identical. The set of Gaussian–
Hermite moments is computed using both Wang’s [32] and the
proposed methods.

In the first numerical experiment, a set of fingerprint images of
unified size 128 × 128 as displayed in Fig. 5 is used. The set of 2D
Gaussian–Hermite moments is computed using both methods. The
computational processes are performed 10 times for each of the
12 fingerprint images where the average CPU elapsed times and
ETIR are included in Table 1. The average elapsed times are plotted
against the moment order in Fig. 6. It is clear that, the method of
Wang is time-consuming and not suitable for online applications
and systems where it required a higher execution time. On the
other side, the proposed method is very fast method.

In the second numerical experiment, a set of standard gray-
level images of size 512×512 are used. These images are displayed
in Fig. 7 where the images of ‘House’, ‘Lake’, ‘Baboon’, and ‘Mig29’

Fig. 5. Images of different fingerprints.
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are displayed in the first row while the images of ‘Peppers’, ‘Pirate’,
‘Sphinx’ and the ‘Blonde women’ are displayed in the second row.
The computational processes are performed and repeated 10 times
for each of the 8 images where the average CPU elapsed times and
the execution-time improvement ratio (ETIR) are included in Ta-

Fig. 6. Average elapsed CPU times in seconds for fingerprints.

Table 1
CPU times and reduction percentage for selected moment orders: fingerprint images
of size 128 × 128.

Max Wang’s method [32] Proposed method ETIR

1 0.0115 0.0011 90.4348%
5 0.0477 0.0042 91.1950%

10 0.1070 0.0081 92.4299%
15 0.1470 0.0104 92.9252%
20 0.1872 0.0123 93.4295%
25 0.2475 0.0156 93.6970%
30 0.3094 0.0188 93.9237%
40 0.4738 0.0263 94.4491%
50 0.6914 0.0338 95.1114%
60 0.9818 0.0411 95.8138%

ble 2. The average elapsed times are plotted against the moment
order in Fig. 8. It is clear that, the proposed method tremendously
reduced the execution time.

Additional numerical experiments are conducted using famous
image databases. The first image database is the 53 object database

Table 2
CPU times and reduction percentage for selected moment orders: gray-level images
of size 512 × 512.

Max Wang’s method [32] Proposed method ETIR

1 0.0589 0.0064 89.1341%
5 0.2166 0.0139 93.5826%

10 0.5871 0.0231 96.0654%
15 1.1194 0.0381 96.5964%
20 1.8823 0.0484 97.4287%
25 2.6949 0.0620 97.6994%
30 3.7206 0.0724 98.0541%
40 6.3408 0.0965 98.4781%
50 9.6211 0.1184 98.7694%
60 13.5195 0.1444 98.9316%

Fig. 8. Average elapsed CPU times in seconds for gray-level images.

Fig. 7. Gray-level images: House, Lake, Baboon, Mig29, Peppers, Pirate, Sphinx and Blonde women.
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Fig. 9. Gray-level images of the 53 objects.

[34] which contains 265 images with a unified image size equal
to 320 × 240, where each object is represented by 5 images.
A gray-level image of the collection of the objects is displayed in
Fig. 9. The second image database is ORL-faces database [35]. This
database contains ten different images for the face of each person,
where the total number of images is equal to 400. All images of
this database have the size 92 × 112. Fig. 10 displays a collection
of the 40 faces. The third image database is the Columbia Object
Image Library (COIL-20) database [36]. The total number of images
is 1440 distributed as 72 images for each object. All images of this
database have the size 416 × 448. Fig. 11 displays a collection of
the 20 objects.

The Gaussian–Hermite moments of these databases are com-
puted using both Wang’s and the proposed method. Similar to the
previous numerical experiment, the computational process is re-
peated 10 times and the average execution times of both methods
are computed. The obtained results are represented and displayed

in Fig. 12. The results of these additional numerical experiments
are consistent with the results of the previously conducted numer-
ical experiments. The execution times of the Wang’s method are
much higher than the corresponding execution times of the pro-
posed method. Based on the results of the conducted experiments,
the proposed method is a real time method while the method of
Wang is impractical for large images.

5. Conclusion

This paper proposes a method for fast and efficient computa-
tion of highly accurate Gaussian–Hermite moments for binary and
gray-level images. The extremely fast computation and low com-
plexity requirements of the proposed Gaussian–Hermite moments
are suitable for handling the large databases of digital images and
online computer vision applications.
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Fig. 10. Collection of the 40 faces (ORL-faces).

Fig. 11. Collection of the COIL-20 objects.
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Fig. 12. Average elapsed CPU times in seconds for the three databases.
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