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ABSTRACT 
 
 
 
 
Similarity searching is a process to find compounds that are similar to a target 

compound, which is useful in discovering potential drugs. The main objective for 

this study is to optimize weights of different similarity measures in data fusion for 

searching chemical database by applying genetic algorithm (GA). Comparisons of 

different coefficient fusions were carried out. The results show that the Tanimoto, 

Cosine, Kulcznski(2) and Fossum coefficients are the best single coefficient. Cosine 

and Fossum coefficients gave the best combination for 2-coefficient fusion with 

weightings of 0.960 and 0.937 respectively. For 3-coefficient fusion Russell-Rao, 

Tanimoto and Cosine coefficients of weightings 0.972, 0.960 and 0.960 respectively 

gives the best result. The combinations Tanimoto and Cosine coefficients perform 

well and give large number of actives. Using combination with weights ranging 

between 0.0 and 1.0 generated by genetic algorithm, gave a better number of active 

than the non-weighted combination. Cosine and Fossum coefficients combined 

without weights yields an average 21.89% among the top 10% compound; whereas 

when genetic algorithm (GA) is used to combine Cosine and Fossum Coefficients 

with weights of 0.960 and 0.937 respectively, an average of 22.16% among the top 

10% compound is obtained. Generally, the combinations of coefficients performed 

better than the single coefficients. 
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ABSTRAK 
 

 

 

Pencarian keserupaan merupakan suatu proses untuk mencari sebatian-

sebatian yang adalah menyerupai satu sebatian sasaran, yang adalah berguna dalam 

penemuan berpotensi ubat. Matlamat utama untuk kajian ini ialah untuk 

mengoptimumkan pemberat dari pengukuran keserupaan yang berbeza dalam 

lakuran data untuk penggeledahan pangkalan data kimia oleh penyelenggaraan 

algoritma genetik (GA). Perbandingan-perbandingan perpaduan koefisien yang 

berbeza telah dijalankan. Hasil-hasil menunjukkan bahawa Tanimoto, Cosine, 

Kulcznski(2) dan koefisien-koefisien Fossum adalah koefisien tunggal dan terbaik. 

Kosinus dan koefisien-koefisien Fossum memberi gabungan terbaik untuk 2 

koefisien lakuran dengan pemberat 0.960 dan 0.937 untuk masing-masing. Untuk 3 

koefisien lakuran Russell-Rao, Tanimoto dan koefisien-koefisien Cosine elaun sara 

hidup 0.972, 0.960 dan 0.960 masing-masing memberi keputusan terbaik. Gabungan-

gabungan Tanimoto dan koefisien-koefisien Cosine berjalan dengan baik dan 

memberi sejumlah besar aktif. Menggunakan gabungan dengan pemberat berjarak di 

antara 0.0 dan 1.0 dijana dengan algoritma genetik, telah memberi sejumlah aktif 

yang lebih baik daripada gabungan tidak menggunkan pemberat. Kosinus dan 

koefisien-koefisien Fossum digabungkan tanpa pemberat hasil purata 21.89% di 

antara bahagian teratas 10% sebatian; manakala algoritma genetik (GA) adalah 

digunakan untuk menggabungkan Cosine dan Fossum Coefficients dengan pemberat 

0.960 dan 0.937 untuk masing-masing, puratanya adalah 22.16% di antara 10% 

teratas sebatian telah diperolehi. Umumnya, gabungan-gabungan koefisien 

memberikan hasil lebih baik daripada koefisien-koefisien tunggal. 
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CHAPTER 1 
 

 

 

 

INTRODUCTION 
 
 
 
 

1.1 Introduction  
 
 

Chemical database is a database specifically designed to store chemical 

compound attributed data. The process of information retrieval is commonly used to 

retrieve chemical compounds. A filtering retrieval process called Data Fusion 

process has been recently used to combine compound results from multiple chemical 

data resources. Similarity measures were used as tools, in chemical database such as 

retrieval, clustering, diversity analysis, which has two main components of molecular 

representation and similarity coefficients. 

 
 
Most chemical databases store information on stable molecules. Chemical 

structures are traditionally represented using lines indicating chemical bonds between 

atoms and drawn on paper (2D structural formulae). While these are ideal visual 

representations for the chemists, they are unsuitable for computational use and, 

especially, for search and storage. Large chemical databases are expected to handle 

the storage and searching of information on millions of molecules taking terabytes of 

physical memory. 

  
 
In most cases, only molecular representation and similarity coefficient can be 

used in chemical data retrieval. However, combination of multiple similarity 

measures and data fusion can produce better results.  

1
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Genetic algorithms are searching technique used in computing to find true or 

approximate solutions to optimization and search problems. Genetic algorithms are 

categorized as heuristics. They  are a particular class of evolutionary algorithms that 

use techniques inspired by evolutionary biology such as inheritance, mutation, 

selection, and crossover (also called recombination). Furthermore, genetic algorithms 

are implemented as a computer simulation in which a population of abstract 

representations (chromosomes , genotype or the genome) of candidate solutions 

(called individuals, creatures, or phenotypes) to an optimization problem evolves 

toward better solutions. Traditionally, solutions are represented in binary as strings of 

0s and 1s, but other encodings are also possible. 

 
 
Similarity searches are now a standard tool for drug discovery. The idea 

behind such searches is that, given a compound with an interesting biological activity 

is compared to other compounds. Compounds that are “similar” to it in structure are 

likely to have a similar activity. In practice, an investigator provides a chemical 

structure as a “probe”, searches over a database of sample-available compounds, and 

finds those that are most similar, which are then submitted for testing. Similarity 

searching can be done on the basis of 2D or 3D structure. 2D similarity searches, 

especially those based on comparing lists of pre-computed substructure descriptors, 

are computationally inexpensive. 

 
 
Similarity measures are a converse of the distance function. Similarity 

functions take pair of points where they return the large similarity value for the 

nearby points, and the small similarity value for the distant points. One way to 

transform between a distance function and a similarity measure is to take the 

reciprocal. Such transformation is the standard method for transforming between 

resistance and conductance in physics and electronics. Similarity measures use two 

basic tools of molecular representation and similarity coefficient to quantify the 

similarity between the representations of two molecules.   

 
 
Data fusion is an approach where data, evidence, or decisions coming from or 

based on multiple sources about the same set of objects, are integrated to increase the 
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quality of decision making under uncertainty about the objects. It exists in nature 

where living things combine information from multiple resources to create a reliable 

recognition of their surroundings. Fusion has been used for various purposes like 

detection, tracking and decision making.  It has been applied in areas like military, 

robotics, medicine and information retrieval. Fusions can improve confidence in 

decisions due to the use of complementary information. The use of data fusion can 

also improve performance if, for example, a sensor were to become damaged or 

ineffective there would still be information coming in from the other sensors. Data 

fusion leads to extended coverage since if there is more than one sensor they can 

cover disparate areas, times and qualities. 

 
 

A weighting scheme is used to differentiate between different features in a 

molecule, based on how important they are in determining the similarity of that 

molecule with another molecule. 

 
 

Genetic Algorithm is used to find the best linear combination of weights 

assigned to the scores of different matching functions. It is found that his GA based 

system outperforms any of the individual expert matching functions on the 

performance measures. The system also outperforms the best of the individual expert 

matching functions.  

 

 
 
 
1.2 Problem background  
 
 

In process of chemical compound information retrieval, much data fusion 

efforts have been made to combine results from multiple similarities searching 

systems. In similarities searching, a query involves the specification of the entire 

structure of molecules.  This specification is in the form of one or more structural 

descriptors and is compared with the corresponding set of descriptors for each 

molecule in the database. A measure of similarity is then calculated between the 

target structure and every database structure. 
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Molecule graph representations can also be used for the representation and 

searching of databases of 3D structures (Martin and Willett, 1998). The 

pharmaceutical industry makes very extensive use of highly sophisticated systems 

for the storage, retrieval and processing of information describing the chemical 

structures of molecules. 

 
 
The similarity calculations between molecules have been used not only in 

similarity searching, but also in applications like compounds selection and molecular 

diversity analysis. The results of the similarity measure were then used to sort the 

database structures into the order of decreasing similarity with the target.    

 
 

One of the ways to improve the performances of molecular similarity 

searching is the combining of the result of different similarity measures; which, 

known as data fusion process. How to optimize this combined result has become an 

interesting research area in chemoinformatics. 

 
 
Several methods have been used to further optimize the measure of similarity 

between molecules. These methods include weighting and data fusion. A weighting 

scheme is used to differentiate between different features in a molecule, based on 

how important they are in determining the similarity of that molecule with another 

molecule. 

 
 
In recent work by Salim (2002) it is shown that fusion does give 

improvement over the use of single coefficients. Ginn (1997) has found that the use 

of data fusion on two types of ranking resulted in combined rankings that contained 

very different sets of nearest neighbors and often performed better in simulated 

property prediction than did the individual measures. 
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1.3 Problem statement  
 
 

Data fusion has been applied in chemical compound retrieval, in order to 

combine results from multiple similarities searching system. However, one problem 

associated with the data fusion approach is how to optimally combine the results 

obtained from various retrieval systems since there is no known guideline on the best 

fusion model that works for all type of data and activity. A Genetic Algorithm (GA)-

based approach might be employed to find the best linear combination of weights 

assigned to the scores of different retrieval system to get the most optimal retrieval 

performance. 

 
 
Therefore, the focus of this study is to get the most optimal weights to 

combine the similarity measures in order to discover different similarity measures 

with deferent characteristic. That is well suited for various activities, database and 

the type of molecular. To optimize better result, and this study wills also apply GAs 

which is a search technique used in computing to find true or approximate solution to 

optimization and search problem. 

 
 

   This study is aimed to optimize weights of different similarity measures in 

data fusion by applying of genetic algorithm (GA) in a chemical database. 

 
 
 
 
1.4 Objectives 
 
 
 The objectives of this study are summarized as follows: 

 

a) To retrieve compounds from chemical databases using different 

similarity measures based on different similarity coefficient and 

molecular representations.    

 

b) To apply a Genetic Algorithm based data fusion for optimizing 

combination of similarity measures for chemical database retrieval. 
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c) To investigate whether the optimized fusion process does give 

improvement in chemical data retrieval process based on the 

coefficients used. 

 
 
 
 
1.5 Project Scope 
 
 

In order to achieve the objectives stated above, the scope of this study is 

limited to the following: 

 

1. The databases aimed to be used in this study are only limited to 

chemical data from MDDR and ID databases will be used. 

2. Applying   fusion of only similarity coefficients and representations.  

3. Only compound data representation of BCI-based and topological 

indices will be used. 

 
 
 
 

1.6 Justifications for Employing GA 
 
 

Genetic algorithms are well suited to with problems involving chemical 

database due to their adaptability and their effectiveness at searching large spaces.  

The reason for genetic algorithms success at a wide and ever growing range of 

optimization problems is a combination of power and flexibility.  The power derives 

from the empirically proven ability of evolutionary algorithms to efficiently find 

globally competitive optima in large and complex search spaces.  The favorable 

scaling of evolutionary algorithms as a function of the dimension of the search space 

makes them particularly effective in comparison with other search algorithms for the 

large search spaces typical of real world scheduling. Besides the flexibility, genetic 

algorithms effectively multiple facets.  
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Many optimization problems in parallel As pointed by Goldberg (1989) these 

are some of the differences between GA and other optimization and search methods, 

which make GA mush favorable to be implemented in chemical database searching : 

 
 

1. GAs work with a coding of the parameter set, not the parameter 

themselves. 

2. GAs search from a population of points, not a single point. 

3. GAs use objective function information, not derivatives or other 

auxiliary knowledge. 

4. GAs use probabilistic transition rules, not deterministic rules. 

 

In this project we use GA for generated deferent weights (in the range of 0.0 

to 1.0) to each similarity searching and combined the similarity value normalized to 

get the combination  

 
 
 
 

1.7 Report Organization  
 
 

This report is mainly divided into five chapters. The first chapter provides an 

introduction and brief overview of the project including the problem background, 

problem statement, objective, scope, and justifications for employing GA. Chapter 2 

reviews the literature chemical database chemical compounds and retrieval . This 

includes the background knowledge on the terms that are involved in the project 

mainly on similarity searching, data fusion and genetic algorithms. Chapter 3 covers 

the methodology of the research, the techniques that are involved are discussed which 

are data fusion using genetic algorithm. The hardware and software requirements for this 

project are also discussed in this section. Chapter 4 presents the results from applying 

data fusion and genetic algorithm, findings and discusses in this project. Chapter 5 is 

the conclusion of the project based on the four previous chapters that has been 

discussed. There are also recommendation and advantage of this project. 
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CHAPTER 2 
 
 
 
 

LITERATURE REVIEW 

 
 
 
 

2.1 Chemical Database 

 
 

Chemical database is specifically designed to store chemical information of 

stable molecules. Chemical structures are traditionally represented using lines 

indicating chemical bonds between atoms and drawn on paper (2D structural 

formulae). While these are ideal visual representations for the chemist, they are 

unsuitable for computational usage and especially for search and storage (Wikipedia, 

2007). 

 
 
 
 
2.1.1 Chemical compounds 

 
 

The chemical compound is a chemical substance formed by chemically 

combining two or more elements, with a fixed ratio determining the composition. A 

compound can consist either of atoms covalently bonded together (i.e. molecules, 

such as water) or of ions bonded together by the attraction of their opposing charges 

(eg sodium chloride).Compounds may have a number of possible phases. All 

compounds can exist as solids. Molecular compounds may also exist as liquids, gases 

or plasma. All compounds decompose to smaller compounds or individual atoms if 

heated to a certain temperature (called the decomposition temperature). 
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 For example, water (H2O) is a compound consisting of two hydrogen atoms 

for every oxygen atom. A defining characteristic of a compound is that it has a 

chemical formula. Formulas describe the ratio of atoms in a substance and the 

number of atoms in a single molecule of a substance. The formula does not indicate 

that a compound is composed of molecules; for example, sodium chloride (NaCl) is 

an ionic compound.  

 
 

Compounds may have a number of possible phases. All compounds can exist 

as solids, liquids or gases. All compounds may decompose to smaller compounds or 

individual atoms if heated to a certain temperature called the decomposition 

temperature.   

 
 

The atoms within a compound can be held together by a variety of 

interactions, ranging from covalent bonds to electrostatic forces in ionic bonds. A 

continuum of bond polarities exist between the purely covalent bond (as in H2) and 

ionic bonds. For example H2O is held together by polar covalent bonds. Sodium 

chloride is an example of an ionic compound. 

 
 
 
 
2.1.2 Representation of Chemical Structures  

 
 

Many  chemistry and drug related organizations have their publicly accessible 

and proprietary databases of chemical compounds, containing large number of 

molecules; several hundred thousand is a common figure and some have even 

billions of compounds. Many have virtual libraries of compounds generated using 

computational techniques that can be converted to chemicals using combinatorial 

chemistry techniques. 

  
 

Although there are 2-dimensional and 3-dimesional representation techniques 

available for chemical molecules, only the 2-D representation techniques are more 

popular. The 2D chemical structure diagrams are not suitable for storage and 

retrieval in a computerised chemical database system.  A different kind of 
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representations has been used for storing chemical structures. These representations 

model the entire molecule by listing every atom that makes up the molecule. Four 

types of 2-D representation techniques have been used extensively in chemical 

information systems. These techniques are the systematic nomenclature, 

fragmentation codes, line notations and connection tables.  

 
 
The systematic nomenclatures primarily used in manual information retrieval 

systems; however, due to the lack of flexibility nomenclatures often require 

translation automatically to another type of representation if it is to be used in 

computerized systems (Stouw and Elliott, 1974, Willet, 1980).  

 
 
 
 
2.1.2.1 Fragmentation Codes 

 
 

Fragmentation codes were the first to be used as structural representation in 

chemical retrieval systems such as the structure and substructure searching, and are 

still in use. A fragment code is a set of pre defined substructure attributes, where the 

presence or absence of which is used as characterization of a molecule. 

 
 
A fragment code representation has several problems due to its subjective 

nature. The system is yet to be standardized and every organization has its own 

specific code order for its own database of compounds. The coding of new 

compounds is normally a manual task and sometimes all the molecules need to be 

recoded if the code changed because of the addition of a new compound (Craig, 

1969). Fragmentation codes also result in ambiguous representation for the molecule 

as the set of codes assigned to a molecule might interconnect in a different number of 

ways. 
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2.1.2.2 Linear Notations 

 
 

It represents a structure by string of alphanumeric characters. Each character 

represents an atom, a bond or a small group of atoms and bonds. It is very short as 

compared to the connection table; therefore, it is well suited for storing and 

transmission of molecules. The inter-connections of the atoms and groups are not 

stated explicitly, but are implicit in the ordering of the symbols within the string. The 

meaning of the symbols may be context dependent, and thus quite detailed analysis 

may be necessary to determine the exact form of the structure represented by the 

notations (Willett, 1987). Winner in 1988 has developed a large number of notational 

schemes before the simplified molecular input line entry specification (SMILES). 

The SMILES notation has gained a wide spread acceptance because of its easiness to 

use and is more comprehensive than the wiswesser line notation (WLN) ,which had 

been in use for more than three decades since its development in 1954. 

 
 
 
 
2.1.2.3 Connection Tables 

 
 

Connection tables list all of the atoms present in a molecule together with 

details of how each atom is connected to its neighbors. The atoms are numbered, 

with the atom types usually being represented by their atom symbols and the bond 

types are indicated by code.  The present connection tables are the primary means of 

representation for the chemical structures in both public and in house chemical 

information systems.  

 



12 
 

 

 
Figure 2.1 Connection table of molfile type, which is generated by the XyM2Mol 

application. Where the top row of the connection table gives brief pieces of 

information, each row in the middle part is concerned with the attributes of a node. 

The bottom part shows data of bonds (Kei ITO,TANAKA and FUJITA,2005). 

 
 
A connection table contains all necessary information required for plotting its 

2-D graph by any program like SMILES. The simplest connection table consists of at 

least two sections: first, a list of the atomic numbers of the atoms; second, a list of 

the pair wise atomic bonds in a molecule. More Tables that are sophisticated contain 

the bonding angles information for plotting the bonds. Since connection tables 

contain an explicit representation of the inter-connections between the atoms in a 

molecule, they are particularly well suited to manipulations involving such 

topological information as atom-by-atom searching, graphical structure input and 

display, structure property correlation and reaction indexing. There are a large 

number of standardized file formats based on connection tables such as the 

Molecular Design Limited’s (MDL), MOL and Structure Data Format (SDF) 

formats. 

 

Connection table representation can be expanded to 3D structure 

representation when the related information is available, either through experiments 

(Allen et al., 1991) or through calculations (Ricketts et al., 1993). There must be 

some indication of the distances between all atoms, and not just the bonds between 

Number of 
 Atoms 

Number of 
Bonds 

The first atom is 
carbon 
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them as in 2D structure representations.   This can be done by storing the inter-

atomic distances within a molecule. 3D structures can have various conformations, 

each of which may represent a different shape.    

 
 
The connection tables have proved to be the most flexible and generally 

useful representation due to which it forms the basis of most present day computer 

libraries and systems. 

 
 
 
 
2.2 Retrieval of Data from Chemical Database 

 
 

Retrieval of data from chemical structure search system can offer three 

principle types of searching facility of retrieval mechanisms these are structure, 

substructure and similarity searching. This expands the capabilities of the existing 

systems by capitalizing on the strengths of relational database technology. The 

system allows the user to optimally store and search chemical structure information 

including information related to multi-valued atoms and multi-typed bonds. 

 
 
 
 
2.2.1 Structure Searching 

 
 

Structure searching is the first principle of the retrieval mechanisms. 

Structure search involves searching a molecule database for a specified query 

molecule. The user to the database to search for a compound that matches perfectly 

with the target structure supplies the complete structure of a molecule. This type of 

search is use to get some data about a particular compound. Another use to this type 

of search is during registration process, for new molecule; a structure file is used, in 

which a single and unique record of each compound is maintained and known as a 

registry file (Ash et al., 1985).  
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In the connection tables, the equivalence of two structures can be 

demonstrated by generating all possible numbering of atoms in a query and then 

comparing the resulting connection tables with those stored in the database using a 

graph isomorphism algorithm. A chemical structure has treated as a graph, where 

there is a finite set of vertices (atoms) and edges (bonds) (Tarjan, 1977). This 

approach takes a lot of time due to the number of different tables that can be 

constructed for a compound, which is N! For an N-atom molecule. A scheme called 

the Morgan algorithm can be used to produce a unique numbering of the set of atoms 

in a connection table (Morgan, 1965). 

 
 
 
 
2.2.2 Substructure Searching 

 
 

Substructure searching is the second principal retrieval mechanisms. It refers 

to the capability to use a structure as a search term and locate chemical structures 

containing that structural skeleton. They involve the retrieval of molecules from the 

database that contain a user-defined query substructure.  Substructure search is 

especially useful for finding structures containing a specified functional group, thus 

allowing the properties common to that group to be observed. 

 
 
Substructure search identifies all the molecules in the database that contain a 

specified substructure.  Another use of substructure search is in the implementation 

of pharmacophoric pattern searching, where compounds containing a specific 3D 

substructure were identified in a molecular modelling study. The subgraph 

isomorphism of graph-matching operation is an NP-complete problem, in which no 

polynomial time algorithm is known (Garey and Johnson, 1977).   

 
 
Even if heuristics of various sorts are adopted to rapidly reject non-mappings, 

the operation is still very time-consuming and thus most research on substructural 

retrieval has focussed upon the development of efficient and effective screening 

methodologies. Furthermore, there are types of substructure searching system which 

do not employ this two-stage searching technique (Barnard, 1993). 
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According to Willett et al. (1998) Substructure searching has a few 

limitations. The first limitation is that the user has to specify the structural constraints 

required in the molecules that are retrieved. Second limitation is that the user 

normally cannot control the size of the output produced and there is no direct 

mechanism to rank the output in the order of decrees the similarity.  These 

characteristics have led to the development of another access mechanism known as 

similarity searching. 

 
 
 
 
2.2.3 Similarity Searching 

 
 

Similarity is a degree of symmetry in either analogy or resemblance between 

two or more concepts or objects. The notion of similarity rests either on exact or 

approximate repetitions of patterns in the compared items. 

 
 
 Similarity searching in chemical database was first introduced in the mid-

1980s by (Carhart et al.1985; Willett et al.1986). Similarity searching offers 

complementary alternative to substructure and 3D pharmacophore searching. A 

query compound is used to search a database to find those compounds that are most 

similar to it; this involves comparing the query with every compound in the database. 

The database is then sorted in order of decrease similarity to query. A measure of the 

similarity is then calculated between the target structure and every database structure.  

 
 
 Similarity measures quantify the relatedness of two molecules with a large 

number if their molecular descriptions are closely related and with a small number 

(large negative or zero) when their molecular descriptions are unrelated.  There are 

many measures available to quantify the degree of similarity between a pair of 

molecules.  The computational requirements of these measures vary depending on 

the level of detail used to represent the molecules that are being compared. 

 
 
The maximal common substructure (MCS) is the largest set of atoms or 

bonds from the target structure that can be superimposed exactly onto another 
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structure, and is identified by using a maximal common subgraph isomorphism 

algorithm. Garey and Johnson 1977 due to its NP-complete computational 

requirement, MCS algorithms have not been widely used for similarity searching to 

date.  

 
 

Molecular similarity can be defined in many ways depending on the 

information used to represent the molecules and the measures employed to quantify 

the degree of similarity between two molecules (Johnson and Maggiora, 1990; Dean, 

1999). 

 
 

Similarity searching offers several advantages. First, there is no need to 

define a precise substrute, 3D substructure or pharmacophore query since a single 

active compound is sufficient to initiate a search. Second, the user has control over 

the size of output as every compound in the database is given a numerical score that 

can be used to generate a complete ranking. Finally, similarity searching facilitates 

iterative approach to searching chemical database since the top-scoring compounds 

resulting from one search can be used as queries in subsequent similarity search. 

 
 

Molecular similarity measure has two principal components: (i) the structural 

representation, used to characterize the molecules, and (ii) the similarity coefficient, 

used to compute the degree of resemblance between pairs of such representations 

(Willett, 2003). 

 
 
 
 
2.3 Molecular Descriptors for Similarity Searching and Similarity 

Coefficient  

 
 

The manipulation and analysis of chemical structural information is made 

possible through the use of molecular descriptors, these are numerical values that 

characterise prosperities of molecules each of which is based on some pre-defined 

attributes. Many different molecules have been described and used for wide variety 
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of purposes. The machine-readable structure was generation representation like a 2D 

connection table or a set of experimental or calculated 3D co-ordinates. 

 
 
The molecular descriptor is the final result of a logic and mathematical 

procedure, which transforms chemical information encoded within a symbolic 

representation of a molecule into a useful number or the result of some standardized 

experiments. 

 
 
 
 
2.3.1 Molecular Representation  

 
 

The Molecular descriptors can be divided into 1D, 2D (such as topological 

indices and 2Dfingerprint) and 3D descriptors (such as pharmacophore keys). 

 
 
I. 1D descriptors 
 
 
 1D descriptors are aspects of molecules and they are physicochemical 

properties. Several similarity measures make use of the global physicochemical 

properties of the whole molecules. Examples of these types of properties were 

investigated by CAS and molar refractivity workers (Fisanick et al., 1992). The 

whole-molecule properties include principal moments of inertia, principal axes, 

volume of the inertia ellipsoid and molecular weights.  Some of these properties can 

take a lot of time to calculate, most obviously properties that are calculated using 

quantum mechanics packages. Molecular properties are sometimes combined with 

structural descriptors as will be described later, to characterise molecules. 

 
 

II. 2D descriptors 
 
 

These types of descriptors are based on information derived from the 

traditional 2D structure diagrams.  Examples of 2D descriptors are the topological 

indices and 2D screens. The 2D screens were initially developed for substructure 
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search systems in which bit strings are used to represent molecules. There are two 

types of 2D screens: dictionary-based bit strings and hashed fingerprints.  

 
 

In the dictionary-based bit strings, a molecule is split up into fragments of 

specific functional groups or substructures.  The fragments (structural keys) used are 

recorded in a predefined fragment dictionary that specifies the corresponding bit 

positions (screen number) of the fragments in the bit string.  Bits, either individually 

or as a group, represent the absence or presence of fragments. Substructural fragment 

descriptors can involve atoms, bonds and rings.  Examples of these types of 

fragments are augmented atoms, atom sequences, ring sequence, ring fusion 

sequence, atom pair and topological torsion (Dittmar et al., 1983; Carhart et al., 

1985; Nilakantan et al., 1987).    

 
 
In hashed fingerprints, all the unique fragments that exist in a molecule are 

hashed using some hashing function to fit into the length of the bit string.  This 

approach allows for more generalisations because it does not depend on a predefined 

list of structural fragments. The fingerprints generated are characterised by the nature 

of the chemical structures in the database rather than by the fragments in some 

predefined list.  Instead of using a fragment dictionary, this method defines a set of 

patterns to index. 

 
 
Topology indices are single-value descriptors that can be calculated from the 

2D graph representation of molecules. The Topological indices characterise the 

bonding pattern of a molecule by a single value integer or real number, obtained 

from mathematical algorithms applied to the chemical graph representation of the 

molecules.  Each index, thus, contains information not about fragments or some 

locations on the molecule, but rather about the molecule as a whole.  Simpler 

descriptors include the number of atoms and bonds and the number of rotatable 

bonds.  

 
 
They are various topological indices like the molecular connectivity indices 

such as topological state indices, electrotopological state indices, hydrogen 
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electrotopological state indices, atom type electrotopological state indices, hydrogen 

bonding descriptor indices, bond type electrotopological state indices, the difference 

chi indices, the delta chi indices and vertex eccentricity (Hall and Kellogg, 1999). 

The topological relationship is based on the graph distance to each other atom. The 

electronic aspect is based on an intrinsic state plus perturbation due to intrinsic state 

differences between atoms in the molecule. 

 
 
Molecular connectivity or chi indices quantify molecular structure by counts 

of substructure fragments like branching, heteroatom content and cyclicity.  The 

topological state indices are numerical values that encode information about the 

topological environment of an atom, based on the encoding of atom information in 

all paths emanating from that atom. The electrotopological state indices are 

numerical values that encode information about both the topological environment of 

each atom in a molecule and the electronic interactions due to all other atoms in that 

molecule.   

 
 

III. 3D descriptors 
 
 
 3D descriptors are modeling environment of molecules. They have the ability 

to model the biological activity of molecules because the binding of a molecule to a 

receptor site is a 3D event.  Generating a 3D structure, handling conformational 

flexibility and deciding which conformers to include can all make 3D descriptors 

computationally more expensive than 2D descriptors.  Examples of 3D descriptors 

are 3D screens, potential-pharmacophore-point descriptors, affinity fingerprints, 3D 

atom environment for use in atom mapping similarity searching and 3D molecular 

fields for use in field-based similarity searching.  Shape descriptors, like surface area 

and volume, also use the 3D shape of the whole molecule.   

 
3D screens were initially designed for 3D substructure searching.  The 

screening methods used in these systems encode spatial relationships, most usually 

distances and/or angles, between features in a molecule such as atoms, ring centroids 

and planes.  Examples of the distance-based descriptors are distance distributions 

that are the count of distance ranges in a molecule, individual-distances descriptor 
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which encodes inter-atomic distances between pairs of elemental types, and a 

descriptor based on the sum of the squared distances between each triplet of atoms 

(Willett et al., 1998).    

 
 
In chemistry, 2D structural representations are still extensively in use. 

Table 2.1 bellow shows some relative merits and problems of 2D and 3D structural 

representations. 

 

Table 2.1 : 2D versus 3D structure representation 

2D 3D 

 

Pros: 

• Show complete 

structure  

• Easy recognition 

of patterns  

• Chemists know 

how good 

structures look like 

 

Cons: 

• Removes too 

much information 

from the real 

structure  

• Make impossible 

spatial matching of 

structures  

Pros: 

• All available 

structural information 

are present  

• Understand shapes  

• See what would be 

hidden in a 2D view  

Cons: 

• Limited to viewing 

part of structure  

• Unsuited for quick 

comparisons  

• Needs interaction to 

avoid ambiguities  
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2.3.2 Similarity Coefficients 

 
 

Similarity coefficients are used to obtain a numeric quantification to the 

degree of similarity between a pair of structures (Willett, 1990). There are many 

types of similarity measures that are in use.  As an example, edit distance, which is a 

string-based measure of the number of operations to transform the representation of a 

structure to the representation of another structure, has been used to measure the 

similarity between two 3D molecular structures (Wang and Wang, 2001).  

 
  
 

There are four main types of similarity coefficients: distance coefficients, 

association coefficients, correlation coefficients and probabilistic coefficients 

(Sneath and Sokal, 1973; Willett, 1987; Ellis et al., 1994) table 2.2 shows some 

similarity coefficients.  

 
 

Distance coefficients are used to measure the distance between structures in a 

molecular space.  Association coefficients are pair-functions that can measure the 

agreement between the binary, multi-state or continuous character representations of 

two molecules (Sneath and Sokal, 1973). Some association coefficients that have 

been used to measure the similarity between compounds. Correlation coefficients are 

generally used to measure the degree of correlation between sets of values 

repercentage the molecules, like the proportionality and independence between pairs 

of real-valued molecular descriptors.  Probabilistic coefficients, whilst not much used 

in measuring molecular similarity, focus on the distribution of the frequencies of 

descriptors over the members of a data set, giving more importance to a match on an 

infrequently occurring variable.  
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Table 2.2 : Association coefficients (1-16), correlation coefficients (17-21), and 

distance coefficient (22) (Ellis et al., 1994). Each coefficient computes the similarity 

between two molecular fingerprints, X and Y, of length n, in which a is the number of 

bits set in both X and Y, b is the number of bits set exclusively in X, c is the number 

of bits set exclusively in Y and d is the number of bits set in neither X or Y. 

 
No Coefficient Formula No Coefficient Formula 

1 Jaccard/Tanimoto 
cba

a
++

 12 Ochiai/Cosine 
 

2 Dice 13 Kulczynski(2) 
 

3 Russell/Rao 
 

14 Forbes 
 

4 Sokal/Sneath (1) 15 Fossum 

 

5 Kulczynski(1) 
 

16 Simpson 
 

6 Simple Matching 
 

17 Pearson 

7 Hamann 18 Yule 
 

8 Sokal/Sneath(2) 
 

19 McCon-naughey
 

9 Rogers/Tanimoto 
 

20 Stiles 
 

10 Sokal/Sneath(3) 
 

21 Dennis 
 

11 Baroni-Urbani/Buser 22 
Mean 

Manhattan  
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Similarity coefficients were examined in order to group together those with 

comparable performance when applied to searches of binary representations. 

Example coefficients from each of the groups were then used to determine whether 

the performance of single coefficients could be improved by combining coefficient 

using data fusion.  

 
 
For example, a fingerprint is a binary sequence of Boolean values where 1 

indicates a presence of a feature and a 0 indicates absence. Feature examples are 

“200 < molecular weight <= 250” or “aromatic ring count = 1”. When comparing 

these fingerprints similarity scores are used. A much-applied method is the Tanimoto 

similarity (Figure 2.2). Which for molecule A and B is defined as SAB= a / (a + b 

+c) where a bit are set common to both strings, b bits are set in the comparison 

string, c bit are set in the reference-structure string, and d bits are set in neither string. 

 

 

1 0 1 1 1 0 1 1 0 0 1 1

 

 

SAB = 5 / (5 + 3 +1) = 0.56 

 

Figure 2.2  The Tanimoto Similarity Measures 
 
 
 
 
2.4 Data fusion  

 
 

Data fusion is the process of combining inputs from several similarity 

measures with information from other similarity measures comprising information 

processing blocks, databases or knowledge bases, into one representational format. 

The data fusion can give an overall estimate of the similarity according to the 

characteristics mentioned. 

 
 

0 0 1 1 0 0 1 0 1 0 1 1

A 

B 

b = 3 

c = 1 

a = 5 
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The process of data fusion involves computing several types of similarity 

measures, and combining the results using one of several fusion rules.  The combined 

scores output by the fusion rule are then used to re-order the compounds to give the 

final ranked output.  Holliday et al. (2002) have concluded that data fusion results in 

an increase in search effectiveness.  In some cases where the use of a fusion rule 

results in the assignment of the same score to two or more items, a further sort key is 

specified for the tied compounds.  An example would be to sort the canonicalised 

connection tables of the tied compounds alphabetically.  Weights can also be 

allocated to individual rankings based on some statistical observations of the 

coefficients’ historical performances.    

 
 

The fusion process is often categorized as low, intermediate or high-level 

fusion, depending on the processing stage at which fusion takes place (Ng and 

Kantor, 1998).  At the low or primary level, fusion (also called data fusion), all the 

raw data available to the detecting systems were considered together in the fusion to 

produce new raw data that is an overall estimate and expected to be more informative 

than the inputs.   For example, in image processing, images from several spectral 

bands of the same scene are fused to produce a new image that ideally contains a 

single image comprising all information available in the various spectral bands.   

 
 
At the intermediate or attribute level fusion, (also called feature level fusion), 

primary signals from the detecting systems are processed to produce a set of specific 

attributes, and decisions about the objects are made according to an optimal decision 

rule based on all such attributes. An example of this would be using several different 

features of extraction methods on image data to get a set of features of the object.  

Relevant features of the object to be detected can then be obtained from this set of 

features.   

 
 
In high or decision level fusion, each detecting system individually makes its 

own partial decision about the objects using its own data and according to its own 

criteria.  A final decision combining all these partial decisions is then made. When 

the partial decisions are in the form of a confidence or score, the fusion is called hard 

fusion.  If the partial decision is in the form of a decision, the fusion is called soft 
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fusion.  Methods of decision fusion include voting methods, statistical methods and 

fuzzy logic based methods. 

 
 

Fusion usually follows a similar set of procedures. These are the collection of 

primary observable data from each source, performing some preliminary filtering of 

the data, scoring or ranking the data against some ideals. The processing the data so 

that it is in the form suitable for fusion with other data, weighting the data based on 

its importance and then combining the different sources of data using a fusion 

scheme (Hall, 1992).   

 
 

Fusion may be useful for several objectives such as detection, recognition, 

identification, tracking, change detection, decision-making, etc. These objectives 

may be encountered in many application domains as Defense, Robotics, Medecine, 

Space, etc.  

 
 

Several data fusion algorithms have been developed and applied, individually 

and in combination, providing users with various levels of informational detail. The 

U.S. Defense Department’s Joint Directorate of Laboratories Data Fusion Sub panel 

has developed three basic categories or levels of data fusion (Linn and Hall, 1991). 

These fusion levels are differentiated according to the amount of information they 

provide. The most basic level involves the fusion of multi-sensor data to determine 

the position, velocity and identity of a target. At this level, however, only raw, 

uncorrelated data are provided to the user. In comparison, level two data fusion 

provides a higher level of inference and delivers additional interpretive meaning 

suggested from the raw data. Level three data fusion is designed to make assessments 

and provide recommendations to the user, much as occurs in knowledge-based expert 

systems (KBES). Thus, each jump between data fusion levels represents a 

corresponding leap in technological complexity to produce increasingly valuable 

informational detail. 

 
 
Using an efficient fusion scheme significant advantages are expected as given 

in the points bellow:   
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• Improved confidence in decisions due to the use of 

complementary information.  

• Improved performance to countermeasures. 

• Improved performance in adverse environmental conditions. 

Typically smoke or fog cause bad visible contrast and some 

weather conditions (rain) cause low thermal contrast (Infra 

Red imaging), combining both types of sensors should give 

better overall  performance.  

 
 

The fusion procedures are categorized by their input/output characteristics in 

five categories as proposed by Dasarathy (1994) they are, Data in-Data out, Data in-

Feature out, Feature in-Feature out, Feature in-Decision out, Decision in-Decision 

out.  

 
 

Fusion methods may also be categorized by the extent to which they make 

use of learning from examples. A part from what is learned; knowledge about the 

optimum fusion is fed into the system either explicitly or implicitly. Implicit feeding, 

however, needs some expert knowledge that defines the optimal fusion as an and/or 

combination. A scheme often used that allows the introduction of various and 

complex expert knowledge is based on the fuzzy logic theory. On the other hand 

neural networks are often presented as good candidates for learning from examples. 

The best fusion scheme should include both knowledge sources.  

 
 
 
 
2.5 Data Fusion in Chemical Compound  

 
 

There is a high possibility that there does not exist a single, best, measure of 

molecular similarity that can uniquely represent biological similarity of molecules.  

This possibility has led to the consideration of combining several similarity measures 

with the expectation that a more descriptive measure of biological similarity will 

result compared to when only a single measure is used.  Many of the fusion ideas 

applied to molecular similarities originate from the idea of combining several 
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independent information retrieval system components to get a performance over and 

above that of the best individual component (Willett, 2000).  Combining several 

similarity measures may be desirable because different measures may make use of 

different sources of evidence.  A particular similarity measure may return active 

molecules that another does not, or it may give a better estimation of the biological 

similarity of a particular type of molecule. Fusing different measures could result in a 

value that is a more comprehensive measure of similarity. 

 
 
 
 
2.5.1 Fusions of Molecular Representation 

 
 

There are many studies that involve the combination of similarity measures 

based on different molecular descriptors including the study conducted by Kearsley 

et al. (1996). They performed some linear combinations of pairs of similarity scores 

generated by different 2D descriptors such as atom pairs, topological torsions and 

their binding property versions. Two combination functions were used.  The first 

combination function took the mean of the similarity values of the descriptors as the 

combined similarity scores.  The second combination took the minimum between the 

two ranks obtained by a compound using two descriptors as the new rank.   

 
 
Matter (1997) have showed that combining 2D fingerprint with other 

descriptors did not increase the coverage of actives in a cluster-based selection, 

where as the performance of 3D descriptors can be improved if they are combined 

with a valid 2D descriptors. 

 
 
On other studies involving fusion of similarity rankings based on different 

molecular descriptors have also been conducted by Ginn et al. (1997 and 2000).  

They have followed several steps where the fusion rules originated from the rules 

used by an earlier study in text retrieval by Fox and Shaw(1994) have been 

implemented .  These rules are MAX- maximum (individual rankings), SUM- sum 

(individual rankings), MIN- minimum (individual rankings), and SUMN- sum 
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(individual rankings) / count (rankings less than n nearest neighbours), where n is the 

nearest neighbours of interest (Ginn et al, 1997; Ginn et al., 2000). 

 
 
2.5.2 Fusions of Several Molecules in a Single Query  

 
 

The efforts of the fusions of queries in text retrieval are to combine more than 

one molecule in a single query. A modal fingerprint, which constructed from the 

common bits found in the molecular fingerprints of an input dataset, been used to 

search different databases (Shemetulskis et al., 1996). Some user-defined thresholds 

were commonly determind.  It has been found that potentially interesting 

compounds, that could not be found by direct similarity searching against structures 

closest in representation to the features contained in the modal fingerprint, can be 

extracted from a commercial database using this kind of query. Combined chemical 

target has also been used in an iterative similarity searching using an approach 

analogous to relevance feedback in the text retrieval area . 

 
 
Another effort made by Nachbar(2000) in combining the molecular 

descriptors of several molecules to construct a hybrid molecule for use as a target in 

similarity searching has also resulted in a diverse set of structurally reasonable 

molecules . 

 
 
The descriptor of the joint chemical target was averaging from the descriptors 

of its member.  The joint target was used again to rank the compounds in the 

database.  It was shown that the use of the joint targets in addition to the use of single 

targets could significantly enhance the retrieval of active compounds.   

 
 
 
 
2.5.3 Fusions of Similarity Coefficients 

 
 

Many different types of similarity coefficient have been described previously 

and most of them can be grouped into three broad classes: distance coefficients, 
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association coefficients and correlation coefficients. Distance coefficients quantify 

the degree of difference between two objects and have been extensively used in 

many applications of multivariate statistics, probably due to the simple geometric 

interpretation that is attached to many of them. With a distance coefficient, the 

greater the degree of similarity between two objects the smaller the value of the 

coefficient (and vice versa). Association coefficients, conversely, are most 

commonly used with binary data (i.e., variables denoting the presence or absence of 

descriptors in an object) and are often normalised to lie within the range of zero (no 

similarity at all) and unity (identical sets of descriptors). That said, association 

coefficients can be used with non-binary data, in which case other ranges of values 

may apply (e.g., the lowerbound of the well-known Tanimoto coefficient is –1/3 

when used with such data ). Finally, correlation coefficients measure the degree of 

correlation between the sets of values characterising each of a pair of objects (rather 

than their more conventional use in multivariate analyses to probe the relationships 

between pairs of variables). Group fusion involves combining the results of 

similarity searches based on multiple reference structures and a single similarity 

measure (Willett 2006). 

 
 
There have been several studies comparing the merits of different chemical 

similarity measures. It has been found that the Tanimoto coefficient provides a 

generally effective approach to molecular property prediction and similarity 

searching, and this coefficient is now widely used for measuring the similarity 

between pairs of 2D bit-strings (although some limitations that have recently become 

apparent Holliday et al.( 2002). 

 
 
Data fusion rules were used in virtual screening and to a multiple integral 

formalism. Many of the fusion ideas applied to molecular similarities originate from 

the idea of combining several independent information retrieval system components 

to get and enhancing performance over that of the best individual component 

(Willett, 2000). Combining several similarity measures may be desirable because 

different measures may make use of different sources of evidence. They examine 

several cases of similarity fusion using different coefficients and different 
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representations and consider the reasons for positive or negative results in terms of 

the similarity distributions.  

 
 
Three rankings based on 2D fragments, 3D fragments and physical 

properties, were calculated using the Tanimoto similarity measures, and fused using 

the SUM, MIN and MAX fusion algorithms (Ginn et al., 2000).  Whilst the best 

similarity measure varies across activity subclasses, it was found that fusion using 

SUM and MAX generally gives a higher number of activities among the top rank 

positions compared to the individual measures.  SUM was also found to perform 

better than any individual measure in terms of giving smaller rankings to active 

compounds.  Another performance measure is the hamming distance between the bit 

strings repercentage activity subclasses of a database compound and a target 

compound at each rank. It is also proved that the SUM fusion is significantly better 

than each of the three original similarity methods, followed closely by MAX.   

 
 
Using a different database, Ginn et al.(2000) also tried fusing 2D fingerprint, 

3D atom-mapping and field based similarity searching measures. They found that the 

fused results give a generally high level of effectiveness compared to the best 

individual results.  The SUM fusion also proved to be the best fusion rule compared 

to other fusion rules tested.  The generally good results of fusion support its 

applicability in similarity searching, and the experiments, the best measures were 

found to vary from target to another. 

 
 
Twenty two different binary similarity coefficients were fused based on the 

number of common top ranking compounds (Holliday et al.2002).  Eleven similarity 

coefficients were identified as representative of the full range of coefficients.  For 

each compound, the rankings produced by all possible combinations of any number 

of coefficients were averaged to give a new ranking. Based on this new ranking, it 

was found that the best performing 2 to 8 coefficient combinations returned more  

actives among the top 400 compounds compared to the best individual coefficient.  

However, the mean and median sum of actives returned by combinations never 

exceeded the mean and median sum of actives returned by individual coefficients.  

The low number of mean and median sum of actives and also the low number of 
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actives returned by best performing combinations as more coefficients are combined 

reflected the effect of poorly performing coefficients in combinations.   In general, an 

individual coefficient that performs well on its own is also likely, but not guaranteed, 

to perform well in combinations.  Most good performing combinations involved the 

Russell/Rao, Simple Matching, Stiles, Jaccard/Tanimoto, Ochiai/Cosine, Baroni-

Urbani/Buser and Kulczynski(2) coefficients.  Holliday et al. concluded that fused 

rankings give more actives among top ranking compounds compared to rankings 

based on individual coefficients if an appropriate combination of coefficients is 

chosen for the fusion. 

 
 
Daut (2004) using neural network algorithms on finding best coefficient and 

fusion of coefficients for similarity searching. They found  that can concluded  that 

frorm MDDR database ,the stiles coefficients it the best used for large MDDR 

database, and for Z-score values <0 .the baroni coefficient is best can be used for 

both Z-score values <0 and >0 .for ID alert database ,the Kulczynski(2)coefficient is 

best used for large database and z-score values <0 while the Russell-Roa coefficient 

is best used for large database and for z-score value >0 .for AIDS dataset, 

combination of Russell-Roa with stiles and Forbes coefficient is best used to perform 

similarity searching . 

 
 

Welmina (2004) apply comparison of the effectiveness of probability model 

with vector space model for compound similarity searching. Result conducting a 

series of simulated similarity searching, it is concluded that PM approaches really did 

perform better than the existing similarity searching.  It gave better result in all 

evaluation criteria to confirm this statement.  In terms of which probability model 

performs better, the BD model shown improvement over the BIR model. 

 
 
 
 
2.6 Genetic Algorithm  

 
 
             In this section, an overview of genetic algorithms (GAs) will be presented 

that includes the origin of genetic algorithms; the basic understanding on what is 
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genetic algorithm and also the components of genetic algorithms, which include the 

various selection methods, crossover and mutation operators. 

 
 

The GAs is general purpose optimization algorithms developed by Holland 

(1975).  They are based on principles of natural evolution.  In these algorithms, a 

population of individuals (chromosomes) undergoes a sequence of transformation by 

means of genetic operators to form a new population.  Two operators of mutation and 

crossover were used.  Mutation creates new individuals by a small change in a single 

individual and the crossover creates new individuals by combining parts of two 

individuals. 

 
 
Genetic algorithms are well suited for chemical data searching problems due 

to their adaptability and their effectiveness at searching large spaces.  The reason for 

genetic algorithms success at a wide and ever growing range of scheduling problems 

is a combination of power and flexibility.  The power derives from the empirically 

proven ability of evolutionary algorithms to efficiently find globally competitive 

optima in large and complex search spaces.  The favorable scaling of evolutionary 

algorithms as a function of the dimension of the search space makes them 

particularly effective in comparison with other search algorithms for the large search 

spaces typical of real world scheduling.  The flexibility of the genetic algorithms has 

multiple facets. 

 
 
The characteristics listed below are the main essence of Darwin’s theory. 

 
 

(i) Each individual tends to pass on its characteristic to its descendants. 

(ii) Nature nevertheless produces individuals with different 

characteristics. 

(iii) Individuals with most favorable characteristics tend to have more 

descendents compared to those having lesser favorable 

characteristics. Thus, this drives the population towards favorable 

characteristics. 
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(iv) Over the long period, variation can accumulate, producing entirely 

new species whose characteristics made them suitable for a certain 

or particular ecological life. 

 
 

Genetic algorithms can be considered as a part of evolution algorithms for it 

usage of gene transmission and mutation mechanisms as an optimization techniques. 

Figure 2.2 shows the classes of search techniques and it clearly highlights that 

genetic algorithms is a sub technique of evolutionary algorithms. 

 

 
Figure 2.3 Classes of search techniques 

 
 

Once the genetic representation and the fitness function are defined, GA 

proceeds to initialize a population of solutions randomly, and then improve it through 

repetitive application of mutation, crossover and selection operators as shown figure 

2.3. 
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Figure 2.4 GA components  

 

Each phase or components in GA plays an important role towards producing 

an optimal solution.  These components will be explained in the next section. 

 
 
 
 
2.6.1 Components of the Genetic Algorithm 

 
 

The components of GA are listed as below: 

 

(i) Initialization 

 
 

There are many ways to initialize and to encode the initial generation 

through binary or non-binary, fixed or variable length strings, and others.  At 
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the initial stage, the system generates randomly valid chromosomes and 

evaluates each one.  Encoding in GA means transforming a chromosome into 

a string of symbols that is can be any cardinality.  Binary symbol is the most 

frequently used in chromosome encoding due to the fact that it is the simplest 

and it can represent maximum information with minimum number of bits.  It 

is also because a binary chromosome can be operated with common genetic 

operators found in most packages of GA. However, But in the case of real-

time scheduling problems, it is impossible to represent the chromosomes in 

the form of binary.  Therefore, it is wise to represent the chromosome in the 

form of non-binary values, such as integers. 

 
 

(ii) Reproduction 

 
 

There are two types of reproduction, general reproduction and steady 

state reproduction.  In general reproduction, the whole population can be 

potentially replaced at each generation.  The most often used procedure is to 

loop N/2 times, where N is the population size. For example, selecting two 

chromosomes each time according to the current selection procedure, 

producing two children from the two parents selected, and finally producing 

N new chromosomes.  Using this method can lead to best chromosome in the 

population being replaced by a least fit chromosome.  

 
 
 Unlike the general reproduction, the steady state method selects one 

chromosome at a time according to the current selection procedure and 

performs crossover and perhaps mutation on them to obtain one or two 

children. The result is reinstall back to the population whereby the least fit of 

the population will be destroyed.  Thus, it ensures that the best string found 

so far will always remain in the population.  This result in a more aggressive 

search that in practice is quite often effective.   

 
 
Goldberg and Dep (1991) have shown that replacing the worst 

member in the population much higher selective pressure compared to 
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random replacements.  Therefore, the focus will be given to steady state 

reproduction as the reproduction method that will be used in this project. 

 
 

(iii) Selection 

 
 

The purpose of the selection is to return the probabilistic of a selected 

parent. This procedure is a stochastic type of procedure, but it does not mean 

that GA employs a directionless search.  The chances of each parent being 

selected very much depend on its fitness.  There are six types of selection: 

 
 

1. Spatially-oriented selection 

 
 

This selection is more towards local search, rather than a global 

search.  This means that selection competition only occurs between 

several small neighbouring chromosomes, instead of the whole 

population.  The neighbourhood is defined by the structure in which the 

population is distributed.  The smaller the size of the neighbourhood is 

better, though the isolation distance between individuals in the population 

is bigger.  But this will ensure the exchange of information between all 

individuals due to overlapping neighbourhoods. 

 
 

2. Tournament selection 

 
 

In tournament selection, a number of individuals are chosen randomly 

from the population and the best individual from this group is selected as 

parent.  This process is repeated as often as individuals that need to be 

chosen.  The selected parent will then undergo crossover and/or mutation 

to produce new offspring. 
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3. Rank-based selection 

 
 

In rank-based selection, the population is sorted according to the 

objective values.  The fitness assigned to each individual depends only on 

its position in the individuals rank and not on the actual objective value.  

Rank-based selection overcomes the scaling problems of the fitness 

proportionate selection.  The reproductive range is limited, so that no 

individuals generate an excessive number of offspring.  Ranking 

introduces a uniform scaling across the population and is the method of 

choice where behaves in a more robust manner compared to fitness 

proportionate selection. 

 
 

4. Fitness proportionate selection (Roulette wheel selection) 

 
 

This is a standard and original method for parent selection, which is 

also known as the Roulette Wheel selection.  It is the simplest selection 

scheme.  In this kind of selection, each chromosome has a chance of 

selection that is directly proportional to its fitness.  The effect of this 

depends on the range of fitness values in the current population.  The 

technique provides a zero bias but does not guarantee a minimum spread. 

 
 

5. Stochastic universal sampling 

 
 

Stochastic universal sampling provides zero bias and guarantees a 

minimum spread compared to fitness-based selection.  The individuals are 

mapped to contiguous segments of a line, such that each individuals 

segment is equal in size to its fitness exactly as in fitness-based selection.  

Equally, spaced pointers are placed over the line, as many as there are 

individuals to be selected.  This kind of selection ensures a selection of 

offspring that is closer to what it deserves compared to fitness-based 

selection. 
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6. Truncation selection 

 
 

Compared to the previous selection methods, modeling natural 

selection truncation selection is an artificial selection method.  It is used 

by breeders for the purpose of large populations or mass selection.  In 

truncation selection, the ideals’ are sorted according to their fitness.  Only 

the best individuals are selected for parents. 

 
 

(iv) Crossover 

 
 

This is the most important operator in GA where it is a process of 

yielding recombination of bit strings via the exchange of segments 

between pair of chromosomes.  In another way, crossover simply means a 

method for sharing information between two parents.  The intention is to 

extract relevant features in the mating of the parents to produce better-

fitted offspring.  There are four kinds of crossover: 

 
 

• One-point crossover 

 

Parent 

                  Parent 

 

 

 

Figure 2.5 One- point crossover  

 

 

 

 

 

 

 

Chromosome 1 11011 | 00100110110

Chromosome 2 11011 | 11000011110

Offspring 1 11011 | 11000011110

Offspring 2 11011 | 00100110110
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• Two-point crossover 

 

                  Parent 

                  Parent 

 

 

 

Figure 2.6 Two- point crossover 

 

• N-point crossover 

• Cut and splice 

 

      Parent  

                 Parent 

 

 

 

Figure 2.7  Cut and splice 

 

 

• Uniform crossover 

 
 

In uniform crossover scheme (UX), individual bits in the 

string are compared between two parents. The bits are swapped with a 

fixed probability, typically 0.5. However, the bits are randomly copied 

from the first or from the second parent 

 
 

 
(v) Mutation 

 
 

By applying mutation on the chromosomes, it ensures that all possible 

chromosomes are reachable.  There are several choices of mutation operators 

that can be applied onto the genes in a chromosome.  For example, one can 

Chromosome 1 11011 | 00100 | 110110

Chromosome 2 11011 | 11000 | 011110

Offspring 1 11011 | 11000 | 110110

Offspring 2 11011 | 00100 | 011110

Chromosome 1 11011 | 00100110110 

Chromosome 2 1101111 | 000011110 

Offspring 1 11011 | 000011110 

Offspring 2 1101111 | 00100110110
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apply simple mutation operators, order mutation operators or directed 

mutation operators. 

 
 

Original offspring 1 1101111000011110

Original offspring 2 1101100100110110

Mutated offspring 1 1100111000011110

Mutated offspring 2 1101101100110110
 

Figure 2.8 Mutation 

 

 
(vi) Inversion 

 
 

The inversion technique is somehow similar with reordering, 

whereby; it operates on a single chromosome and inverts the order of the 

elements between two randomly chosen points on the chromosome.  

However, a biological process inspired this operator and it requires additional 

overhead. 

 
 

(vii) Migration 

 
 

By allowing several populations to be run at the same time in each 

processor separately without increasing the total processing time, it allows a 

chromosome to be passing from one population to another population 

occasionally.  In other word, it allows migration to be done.  At each 

migration, a chromosome is chosen from one population according to the 

current selection procedure and is copied to other populations.  The 

populations will remain in size, so the least fit in a population will be 

destroyed to allow insertion of another chromosome. 

 
 

In most cases, most search methods prematurely converge to a suboptimal 

feasible or infeasible solution.  Since a proper choice of penalty parameters are the 

key aspects of the working of such a scheme, most researchers experiment with 
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different values of penalty parameter values and find a set of reasonable values.  The 

following criteria are always enforced: 

 
 

• Any feasible solution will have a better fitness than any infeasible 

solution. 

• Two feasible solutions are compared only based on their objective 

function values. 

• Two infeasible solutions are compared based on the amount of 

constraint violations. 

 
(viii) Termination of GA 

 
The process of the GA is stopped by more than one methods such as 

the preset number of generations is reached and if there is no more 

improvement in total population average.  The chromosomes in the last 

generation are chosen as the best individuals to solve the problem at hand. 

Therefore, the setting of termination affects also the performance of GA.   

 
 

 

 

2.7 Summary  

 
 

In this chapter, extensive literature review on the chemical database and its 

compounds and the representation of these databases in a computer and the process 

of fusions chemical compounds was represented highlights were made on the 

classical of representation of chemical structures, retrieval data from chemical 

database (molecule) and how the Molecular Descriptors for Similarity Searching and 

Similarity Coefficient. The data fusions that have been used in combination with 

molecular representation, Molecules in a Single Query and Similarity Coefficient, 

were also overview. Then finally, how GAs basically work for solving problems 

such as the one in hand have been covered  
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CHAPTER 3 
 
 
 
 

METHODOLOGY 

 
 
 
 
 

3.1 Introduction 

 

This chapter presents the methods that will be used to carry out optimization 

of weights from different similarity coefficients for their data fusion in chemical 

database through the implementation of GAs. The methodology employed will 

provide a systematic framework of procedures and principles to achieve the objective 

of this study. 

 
 
 
 
3.2 Operational Framework 

 

The study methods will be conducted according to the workflow process as 

illustrated in Figure 3.1.  
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      Methodology implementation phases    

 

 

 

 

 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 3.1 Flow Chart of the Framework 

 
 
 
 
 
 

Phase 1 

 Planning of the research and review of literature 

 Collecting chemical data set from different web sites depending on 

the required activities 

Phase 2 

 Converting the collected data from molecule descriptors to BCI Bit 

Strings descriptors and topology indices. 

Phase 3  

 Apply information retrieval similarity measures’ using different 

similarity coefficients. 

 Combination of these similarity coefficients using sum fusion 

Phase 4  

 
 Design basic genetic algorithm (GA) for optimization of fusion 

process. 

 Apply the genetic algorithm (GA) for optimization of fusions. 

 Evaluate performances of GA fusion. 
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3.2.1 Research Plan and Review of Literature 

 
 

The work plan include understanding the representation of chemical 

structures, retrieval of data from chemical structure, molecular descriptors for 

similarity searching and using similarity coefficients to get similarities between the 

molecules. Chemical database containing 1360 compounds have been used. Data 

needed to Preparing to retrieval from chemical database as well as how to combine 

or fuse between coefficients. Furthermore, data was prior for using the genetic 

algorithm (GAs) to optimize the weights in order to find the better combination 

between the coefficients. 

 
 
 
 
3.2.2 Collection of Chemical Data Set 

 
 

Chemical databases containing huge number of compounds are available in 

many web sites. In this study, the required data is MDL Drug Database Report 

(MDDR) (MDDR is a database covering the patent literature, journals, meetings and 

congresses). Produced by Molecular Design Limited’s (MDL) and Prous Science, the 

database contains over 100,000 compound biologically relevant compounds and 

well-defined derivatives, with updates adding about 10,000 a year to the database. 

The MDDR Finder allows searching the database by structure or across relevant data 

fields. MDL also offers MDDR-3D collected from the Discovery Gate web site 

(URL:https://www.discoverygate.com). 

 
 

Although the MDDR (MDL Drug Database Report) contains many chemical 

compounds in groups of activities with different biological similarities, the data 

collection is focused on selecting some compounds of different activities. 
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3.2.3 Converting Molecule Data to Barnard Chemical Information (BCI) 

 
 

The data available in molecule graph format is converted using MAKEBITS 

software from BCI (Barnard Chemical Information) into bit string format where the 

compound is represented as series of 0’s and 1’s without spacing between them. The 

result of this conversion is a text file containing all the data in BCI bit strings format. 

Each bit represents the existence or absence of certain fragment in the molecule. Bit 

string descriptors are chosen because of their ability to distinguish between actives 

and inactive better than the other descriptors (Brown and Martin, 1996). They have 

also been found to be the most effective descriptors in selecting representative 

subsets of the bioactive compounds (Matter, 1997). 

 
 
BCI is a 1052-bit structural key-based bit string generated based on the 

presence and absence of fragments in the BCI’s standard 1052 fragment dictionary, 

which encodes augmented atoms, atom sequences, atom pairs, ring components and 

ring fusion descriptors (Dittmar et.al, 1983). BCI dictionary could generate 

thousands of keys, resulting in molecular fingerprint bit lengths of approximately 

5,000 bits (MacCuish and MacCuish, 2003). 

 
 
Bit strings are strings of 1 s and 0 s. They can be used to store or visualize bit 

masks. They can be used also to represent sets or to manipulate binary data.  

 
 

I. Input data file formats and extension 

 Sybyl © MOL2 files (.mol, .ml2, mol2) by Tripos, Inc.Sybyl © Molfiles 

(.sm2) as provided by ChemOffice, CambridgeSoft Corp.Sybyl © multiple 

Molfiles (.mol, .ml2) by Tripos, Inc.Molfiles (.mol) by Molecular Design 

Ltd. (MDL).Multiple SD files (.sdf) by Molecular Design Ltd. 

(MDL).HyperChem © files (.hin) by Hypercube, Inc.SMILES notations 

(.smi).MacroModel © files (.dat, .out) by Schrodinger 

  
II. Output data formats (BCI Fingerprint File ,.bci) 
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Bellow is an example how MAKEBITS works to convert molecule data into 

BCI bit string data as shown in figure 3.2. 

 
 
 
 
(a) 
 
 
 
 
 

 

 

 

 

 

(b).1 

 

 

 

 

 

 

 

(b).2 

 

 

 

Figure 3.2 Generate BCI bit string descriptor by using MAKEBITS software (a) 

BCI dictionary could generate and (b).1 and (b).2 Two Dimensional Input Vector 

containing input data, where row represented as the molecular and column is 

compounds. 
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3.2.4 Converting Molecule Data to Topological Indices 

 

Topological indices have been used to discriminate “drug-like” compounds 

from “non-drug-like” ones. Topological descriptors support high-speed technological 

processes that use combinatorial syntheses and high-throughput screening of toxicity 

of large number of compounds. These descriptors do not require time-consuming 

computation procedure.  

 
 
The topological indices characterize the bonding pattern of a molecule by a 

single value integer or real number, obtained from mathematical algorithms applied 

to the chemical graph representation of the molecules.  Each index, thus, contains 

information not about fragments or some locations on the molecule, but rather about 

the molecule as a whole.  Simpler descriptors include the number of atoms and bonds 

and the number of readable bonds (Kunal, 2004). Table 3.1 shows sample data 

generated using DRAGON software. 

 
 
To run the DRAGON software molecular structure files previously obtained 

by other specific molecular modeling software are used. The most commonly 

accepted molecular file formats are: 

 
 

1. Sybyl © MOL2 files (.mol, .ml2, mol2) by Tripos, Inc. 

2. Sybyl © Molfiles (.sm2) as provided by ChemOffice, CambridgeSoft Corp. 

3. Sybyl © multiple Molfiles (.mol, .ml2) by Tripos, Inc. 

4. Molfiles (.mol) by Molecular Design Ltd. (MDL) 

5. Multiple SD files (.sdf) by Molecular Design Ltd. (MDL) 

6. HyperChem © files (.hin) by Hypercube, Inc. 

7. SMILES notations (.smi) 

8. MacroModel © files (.dat, .out) by Schrodinger 

 
 

To make full use of DRAGON calculations, 3D optimized structures with 

hydrogen’s should be used. However, DRAGON can also deal with H-depleted 

molecules and 2D-structures, but some restrictions to descriptor calculation should 
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be applied. Using DRAGON software, most of the common organic and inorganic 

compounds, both charged and uncharged, are correctly processed. DRAGON cannot 

process molecules containing atoms for which some physicochemical properties are 

undefined, disconnected structures such as salts, and molecules with radicals. 

 

 

Table 3.1: Topological indices descriptors generated using dragon software 

Molecule 
ID Molecule Properties or Parameters’ 

ID 1 2 3 4 5 6 7 8 9 10 
1 1.43 -0.3 -0.17 -0.1 1.6 1.62 1.38 -1.01 -0.32 -0.42
2 1.78 -0.21 -0.35 -0.11 1.81 1.73 1.15 -1.01 -0.36 -0.42
3 1.78 -0.21 -0.37 -0.11 1.81 1.73 1.15 -1.01 -0.36 -0.42
4 1.68 -0.33 -0.27 -0.1 1.66 1.68 1.46 -1.01 -0.32 -0.42
5 1.43 -0.3 -0.27 -0.1 2.32 1.68 1.15 -1.01 -0.33 -0.42
6 2.17 -0.15 -0.47 -0.13 1.5 1.68 1.7 0.88 -0.46 -0.42
7 1.78 -0.21 -0.3 -0.12 1.3 1.62 1.93 0.88 -0.43 -0.42
8 2.05 -0.27 -0.37 -0.11 1.3 1.62 1.77 -1.01 -0.38 -0.42
9 0.78 -0.03 -0.3 -0.11 1.19 1.47 1.15 0.88 -0.35 -0.42
10 0.4 -0.33 0.04 -0.06 0.22 0.37 0.13 0.88 -0.11 -0.42
11 0.84 0.11 -0.44 -0.13 1.5 1.31 0.91 -1.01 -0.44 -0.42
: : : : : : : : : : : 
: : : : : : : : : : : 

1360 1.48 0.14 -0.6 -0.14 0.22 0.84 0.6 0.88 -0.57 2.41
 
 

Each index, thus, contains information not about fragments or some locations 

on the molecule, but rather about the molecule as a whole.  Simpler descriptors 

include the number of atoms and bonds and the number of rotatable bonds.  

 
 

The data represented here composed from active compounds with different 

degree of the activity for each of them. There are two data’s as shown in figure 3.3; 

the first data has seven actives. The second has three actives, the first compound 

from each part selected as active target (query), all other compounds are assumed to 

be inactive, to find the similarity to that target. The process will continue the some 

way for other parts. 
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First data  

 
 
 
 
 
 
 
 
 

 
Second Data 

 

 

 

The molecular data converted to BCI bit-strings will be used for similarity 

searches on the MDDR database through the implementation of the similarity 

coefficient given in Table 2.2 Salim and co-workers in (2003) they have clustered the 

mentioned 22 coefficient into 13 groups separated of coefficient in order to enhance 

the similarity searching  as well as combination between groups. To calculate the 

similarity of retrieval compound depend on the 13 groups we use the equation (3.3) 

shows under this table.  The 13 groups of coefficients are shown in Table 3.2. 
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Table 3.2: The 13 Groups Of Coefficients (From Salim El At, 2003), In This 

Study the 13 Groups of Coefficients Will Be Used. 

 
 

NO THE GROUPING OF COEFFICIENTS 
The Number 
Related To 
Table 2.2 

1 Group A  : {Jaccard/Tanimoto, Dice, Sokal/Sneath(1), 

Kulczynski(1)} 

{1 2 4 5} 

2 Group B  : {Russell/Rao} {3} 

3 Group C  : {Simple Matching, Hamann, Sokal/Sneath, 

Rogers/Tanimoto, Sokal/Sneath(3), Mean 

Manhattan} 

{6 7 8 9 10 22} 

4 Group D  : {Baroni-Urbani/Buser} {11} 

5 Group E  : {Ochiai/Cosine} {12} 

6 Group F  : {Kulczynski(2), McConnaughey} {13 19} 

7 Group G  : {Forbes} {14} 

8 Group H  : {Fossum} {15} 

9 Group I  : {Simpson} {16} 

10 Group J  : {Pearson} {17} 

11 Group K  : {Yule} {18} 

12 Group L  : {Stiles} {20} 

13 Group M  : {Dennis} {21} 

 
 
 
 
3.2.5 Data Fusion Process 

 
 

Similarity measures in the chemical information field have, in the main, been 

limited to a few single measures such as the Tanimoto, Cosine, and Euclidean 

Distance. Indeed, many of those shown in Table 3.2 have rarely been used in 

connection with chemical structure similarity calculations. Several have been used in 

comparative studies, seeking to determine which was best single measure for 

performing a particular task, a similarity search for instance. The variety of 

performance of the similarity measures available, has led to an interest in data fusion 
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methods for combining more than one similarity measure with a goal to improving 

the performance of the single measure. A study by Ginn et al (2002). suggests that 

combining the rankings of searches using more than one coefficient would give 

improved performance, and this was further tested by (Holliday et al, 2002). 

 
 

Two procedures were employed in order to carry out the required data fusion 
process. 
 
 
1. Application of information retrieval similarity measures’ using different 

similarity coefficients (weight score, rank). 

 
 

The retrieval of similarity coefficients is used to obtain a numeric 

quantification to the degree of similarity between a pair of structures. The 

coefficients were examined in order to group together those with comparable 

performance when applied to searches of binary representations. Example 

coefficients from each of the groups were then used to determine whether the 

performance of a single coefficient could be improved by combining coefficients 

using data fusion.  

 
 
A set of 13 similarity coefficients, as shown in table 3.2 (chapter2), was 

selected as has been done by salim et al (2003). The formulas shown in table 3.2 

indicate the similarity (or dissimilarity in the case of coefficient 13), between two 

bit-string representations, molecules M1 and M2 of length n 

 

 S(M,Q) = ∑i=1
13

 S(M,Q)                                             (3.1) 

 

Where S(M,Q)is the similarity ,M is molecules, Q is query (target), n is the 

number of molecules and CO is list of coefficient from 1 to 13 formulas. 

 

2. Combination of similarity coefficients using sum fusion method. 

 
 

Similarity measures in the chemical information field have mainly, been 

limited to a few single measures such as the Tanimoto, Cosine, and Euclidean 



52 
 

 

Distance. Many of those shown in table 3.2 have rarely been used in connection with 

chemical structure similarity calculations. 

 
 
Fusion was carried out using representative coefficients selected from each of 

the 13 groups resulting from clustering 22 similarity coefficients. The rank-positions 

from the coefficients were summed to give a new similarity ranking for each 

compound when compared to a target. The SUM fusion function was used at it was 

found to be the most effective in an earlier study. 

 
 

Data fusion was based on a summing procedure on the rankings produced by 

the similarity searches. The combination of similarity rankings using data fusion was 

found to be the most effective method for similarity searching in chemical databases 

according the following steps: 

 
 

1. Execute a similarity search of a chemical database for some particular 

target structure using two, or more, different measures of inter-

molecular structural similarity. 

2. Note the rank position, ri, of each database structure in the ranking 

resulting from use of the i-th similarity measure.  

3. Combine the various rankings using one of the fusion rules (SUM), 

giving a new combined score for each database structure. 

4. Rank the resulting combined scores, and then use this ranking to 

calculate a quantitative measure of the effectiveness of the search for 

the chosen target structure. 

 
The sum of fusion rules for combining n ranked lists are given by: 

 
SUMFUS = ∑n

i=1 ri                                                 (3.2) 
 

  Where ri denotes the rank position of a specific database structure in the i-th  
 

(1≤i≤n) ranked list, 
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3.2.6 Design Basic Genetic Algorithm (GA) 

 
 

The Genetic algorithm (GA) is used and the implementations flow chart is 

depicted figure 3.3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Yes 

START 

Generate a population of chromosomes of size N, 
x1, x2, x3,……… xn   

Calculate the fitness of each chromosomes 
f(x1)…….,f(xn)  

Is the termination 
criterion satisfied? 

Select pair of chromosome for mating 

No  

Perform of crossover (exchange) probability Pc to 
create two offspring 

Perform of mutation (change) probability Pm 
randomly to create two offspring 

Place the result in new population 

If the size of new 
population=N?

Replace the current chromosome population with the 
new population 

End 

Yes 

No

Figure 3.4 Flow Chart of the Basic Genetic Algorithm 
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3.2.7 Optimization of Fusion Process  

 
 

For the purpose of the optimization of fusion process the genetic algorithm is 

used and the implementations flow chart is depicted in figure 3.4.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Calculate the fitness of each chromosome  

Combine_Rank=∑
=

13

1i

WiRi   

Figure 3.5  Flow Chart of the Optimizations of the Fusion Process 

Calculate similarity value and ranked (Rank) 
(R1, R2, …, Rn) 

Generate a population of combination weights of size50, 
 (W1, W2, W3… W13) 

Is numbers of active 
compounds achive? 

Select pair of chromosome (fusion combination) for mating. 

No  

Perform of crossover (exchange) probability Pc to create two 
offspring between pair of chromosome (fusion combination). 

Perform of mutation (change) probability Pm randomly to 
create two offspring 

Place the result in new population 

If the size of new 
population=50?

Replace the current chromosome population with the 
new population 

End 

Yes 

Yes 

No
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3.2.8 Appling the Genetic Algorithm (GA) for Optimization of Fusions 

 
 

The Preprocessing procedure to apply the GA, for optimization weight 

purposes begins with the calculation the different similarity measures based on 

similarity coefficient using the formula given in table 2.2. The method is based on 

linear combinations of ranking from different similarity measures instead of 

similarity values, as a way to standardize the data. For each target structure, the 

combinations were sorted into decreasing order of the number of actives retrieved. 

Then utilize Genetic Algorithms (GA) to explore the search space of the weights. GA 

emulates the process of evolution of species to search for more ‘fit’ individuals. 

These algorithms are very well suited to explore complicated multidimensional 

space. We assign weights (in the range of 0.0 to 1.0) to each similarity searching and 

combined the rankings to get a combined ranking for each structure. A negative 

weight attached to a value signifies a reduced role in retrieval for the particular 

similarity searching that produced ranking. A positive weight, on the other hand, 

signifies an increased role in retrieval. The structures are then ordered in increasing 

order of this combined ranking and then presented to the user for evaluations. A 

proper selection of weights, thus tries to exploit such complementarities. 

 
 

The input data: 
 
 

1. Auto dimensional input vectors which used is consist from 1 to 1360 

molecules. It contains 1056 column and 1360 rows, each of which 

repercentage only one chemical compound.  

2. The value for crossover (Pc ) is taken to be (0.6 to 0.9). This value 

generally produces good result, and for mutation (Pm) best value is 

between 0.001and 0.1 due to being quite small and kept quite low for 

using GAs. 

 
 
The overall process could be completed in ten main steps. 
 
 
Step 1: Represent the weight as chromosome (parent), and any chromosome 

consist of 13 genes (any gene ≡ Single coefficient (13 coefficients).  
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Weights 

Figure 3.6 Chromosome Representation 

 
Step 2: Generate an initial chromosomes population the prefect population 

size is about 50.  

 

Chromosomes (groups) ≡ ch1, ch2, ch3 … chn   
 

Where chi is generated randomly weights (chromosomes) 

 
 

 
 
 
 
 
 
 
 
 
 
  
  
 

 

: 

 

Figure 3.7 Population of Chromosomes (random weights) 
 

 

Step 3: Calculation of the fitness of each individual chromosome, using the 

formula: 

                      f(w) =∑
=

13

1i
WiRi ,and select top 10% of  actives      (3.3) 

where Ri similarity value normalized or ranking positions from similarity 

searching for the structure in the collection. Wi is the associated weight 

ch1

ch2

ch3

ch4

chn

ch5

ch6
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generated by GA. ‘i’ varies from 1 to the number of similarity measure 

used in the experiment. 

 
Step 4: Select pair of chromosomes from the current population to apply the 

genetic algorithm operators (crossover and mutation)  

 
Step 5: Creation of a pair of offspring chromosomes to apply the genetic 

operators’ Crossover. In my work I use two-point crossover  

   

 

 

 
 

 

 

 
 

Figure 3.8 Single-point Crossover process 

 

 
Step 6: Mutation creation of offspring chromosomes, which change the bit 

randomly one bit or two to the chromosome already crossover. 

 

 In mutation operation we used inversion technique to change 

randomly chosen elements. This process we ensures no falling in local 

optima .the probability was used is 0.01%. 

 

 

 

 

 
 

 Single-point crossover 

 Mutation operation of one bit change 

New two offspring or Childs  

New offspring or child  
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Figure 3.9 Inversing Mutation process 

 

Most the mutation Pm (between 0.001and 0.1). 

 

Step 7: Placing the created offspring chromosome in the new population. 

 
Step 8: Repeat step 4 until the size of the new chromosome population=N. 

 N=50. 
Step 9: Replace the initial (parent) chromosomes population with the new 

(offspring) population. 

 
Step 10: Go to step 3, and repeat until the termination criterion is satisfied 

(until to achieve the number of iteration). 

 

 

3.3 Evaluation of the GA 

 
 

Fitness is a numerical score assigned to each chromosome. It is expected that 

the more fit (the higher the fitness number) chromosome the better is the utility of the 

chromosome in solving the problem at hand. Thus the selection of fitness function is 

vital for the effectiveness of GA; and might provide an indication of how good the 

solution is and survival. 

 
 
The process of the GA is stopped when preset number of generations is 

reached which are 1500.  

 
 
In this study, different number of compound from either small or large data 

was being tried with different database parameters, through long or short queries. 
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3.4 System Requirements 

 

The requirements involved in developing the system can divide into two 

types, which is hardware and software: 

 
 
i) Hardware: 

a) Processor Intel Pentium 4. 

b) Memory512 MB. 

c) Hard disk 80GB. 

d) Monitor15”. 

 

ii)  Software: 

a) Matlab7.4 

b) Microsoft Visual C++ 6.0. 

c) Microsoft Word (Office 2007). 

d) Microsoft Work 

e) Windows XP/Vista. 

 
 
 
 
3.5 Summary  

 
 

This chapter discussed the methodology which is used in implementing this 

project, it has four Phases, starting from the first phase which has: planning of the 

research and review of literature and collections of the chemical data sets. Second 

phase is converting the collected data sets from Molecule descriptors to BCI and 

topological indices. Third Phase apply information retrieval similarity measures 

using different similarity coefficient, and combination of these similarity coefficients 

using sum fusions. Finally design basic genetic algorithms (GA) and design to 

optimization of fusion process. Then the steps to apply GA for optimization of 

fusions. Each stage of these stages plays an important role in accomplishing this 

study. 
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CHAPTER 4 
 
 
 
 
 

EXPERIMENTAL RESULTS AND DISCUSSIONS 

 
 
 
 

4.1 Introduction 
 
 

This chapter primarily presents the results obtained by retrieving the chemical 

compounds from chemical databases using different similarity measures based on 

different similarity coefficients and molecular representations.    

 
 

Several query structures were selected and used in the similarity search. 

These similarity searches were carried out against the respective test database using 

13 coefficients, discussed in chapter 3. The database molecules were ranked in a 

decreasing order of the calculated similarity coefficient. The rankings of two 

coefficient search for the same query were compared by counting the number of 

similarity active compounds to the activity of the query compound in the top ranked 

structures. 

 
 
 
 
4.2 Representation of Chemical Compounds 

 
 
Two groups of chemical data sets are used in this project. The first group 

contains 1360 compounds divided into seven groups (Activities) depending on its 
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biological similarities as represented in Table 4.1. The second group contains 1000 

compounds and is divided into three Activities (Table 4.2).  

  
 
The chemical compounds are available in molecule format in chapter 3 

(Figure 3.2) and converted to BCI bit Strings.  

 
  

Table 4.1: First data and it’s activities. 

 
NO Activity Start End No. 

Compounds 
1 Interacting on 5HT receptor 0 270 271 

2 Antidepressants 271 502 232 

3 Antiparkinsonians 503 636 134 

4 Antiallergic/antiasthmatic 637 859 223 

5 Agents for Heart Failure 860 959 100 

6 AntiArrythmics 960 1159 200 

7 Antihypertensives 1160 1359 200 

 
 
For the first group, the 1360-molecules are from the MDL Drug Data Report 

(MDDR) database, containing molecules of drugs launched. The main groups, their 

subgroups and their aggregate activity are summarized see appendix A. 

 
 

Table 4.2: Second data and it’s activities. 

 

 

 

 

 

 

The input data contains the first group, which consists of 1360 compounds 

and each compound is represented by binary vector containing 1056 columns. 

 
 
 
 

NO Start End No. 
Compounds 

1 1 247 247 
2 248 500 253 

3 501 1000 500 
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4.3 Compounds Retrieval  
 
 
The compound retrieval from chemical database using different similarity a 

measure is based on different similarity coefficients .As can be seen It below, clearly 

shows how compounds are retrieved from chemical databases by applying the query 

Q (for M1 and M42) and thus; obtaining the similarity using formula in chapter 3 

(Table 3.2).  

 
 
A matlab program is written to demonstrate how chemical compounds are 

retrieved and similarity of compute using the coefficient formula. The example 

below shows how to define the variables used as coefficients are defined. 

 

 
 
 
 

 
 

 
 

 
 
 
 
 

 

a= 68, d= 966, n= 1056 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1110011010000100000111000000000000000100100000000000100000000000000
0001010000000000000000000010000110000100000000000001000000000000000
0000000000001000000000000000100000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000001111000000000000
0000000000000000000000000000000110100000000000000000000000000000000 
 : : : : : : : : : 
 

b = 13, n=1056 

1110011010000100000110000000000000000101100000000000101000000000000
0001010000000000000000000000000110000000000000000001000000000000000
0000000000001000000000000000100000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000001111000000000000
0000000000000000000000000000000110100000000000000000000000000000000 
 : : : : : : : : : 

c = 9, n = 1056 

Q 

M1 

Compound 
Molecule 

Query 

0100011010000100100110000000000000000000000000000000000000000000
0000001000000000000010000000000000110000010000100010000000000000
0000000000000000000000000000100000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000001011
0000000000000000000000100000000000000000000010100000000000000000 
 : : : : : : : : : 

b = 47, n = 1056 

1110011010000100000110000000000000000101100000000000101000000000
0000001010000000000000000000000000110000000000000000001000000000
0000000000000000001000000000000000100000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000001111
0000000000000000000000000000000000000000000110100000000000000000 
: : : : : : : : : : 

c = 38, n = 1056

M42 

Compound 
Molecule 

Query 

Q 

a= 39, d= 932, n= 1056
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The values for variables a, b, c, d and n discussed earlier in chapter 2 are 

computed and thus are prerequisites for calculating the coefficients. 

 
 
 

clc 
co2=0; 
co3=0; 
co4=0; 
m=data(1,:); 
N=length(m); 
for i=1:1360 
    a(i,:)=data(i,:)&m; 
end 
  
for i=1:1360 
    for j=1:1056 
        if ((data(i,j)==1)&(m(1,j)==0)) 
            b(i,j)=co2+1; 
        end; 
    end; 
end; 
for i=1:1360 
    for j=1:1056 
        if ((m(1,j)==1)&(data(i,j)==0)) 
            c(i,j)=co3+1; 
        end; 
    end; 
end; 
for i=1:1360 
    for j=1:1056 
        if ((data(i,j)==0)&(m(1,j)==0)) 
            d(i,j)=co2+1; 
        end; 
    end; 
end; 
countd=sum(d.'); 
counta=sum(a.'); 
countb=sum(b.'); 
countc=sum(c.'); 

 
 

Figure 4.1 Similarity Measure program for obtaining the value of a, b, c, d and n. 
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4.4 Similarity Calculation  

 
 

In this section, the formula of coefficients is applied to find similarity 

between molecules and the query. Table 4.3 present examples of the similarity values 

after calculation of the 13 group different coefficients such as Table 3.2 in chapter3. 

From each group the one coefficient representative is obtained. Figure 4.2 shows the 

Matlab program developed to applying the Similarity using single coefficient 

equations. 

 
 

JT=counta./(counta+countb+countc);JT_f=JT.'; 

RR=counta./N;RR_f=RR.'; 

SM=(counta+countd)./N;SM_f=SM.'; 

BB=((sqrt(counta.*countd))+counta)./((sqrt(counta.*countd))+counta+countb+countc);

 BB_f=BB.'; 

OC=counta./sqrt((counta+countb).*(counta+countc));OC_f=OC.'; 

KU2=(counta/2).*((2*counta+countb+countc))./((counta+countb).*(counta+countc));

 KU2_f=KU2.'; 

FOR=(N*counta)./((counta+countb).*(counta+countc)); FOR_f=FOR.'; 

FOS=(N*((counta-(1/2)).^2))./((counta+countb).*(counta+countc));FOS_f=FOS.'; 

SIM=counta./(min(counta+countb,counta+countc));SIM_f=SIM.'; 

PE=(counta.*countd -countb. *countc)./ 

(sqrt((counta+countb).*(counta+countc).*(countb+countd).*(countc+countd))); PE_f=PE.'; 

Yu=(counta.*countd - countb.*countc)./(counta.*countd + countb.*countc);Yu_f=Yu.'; 

Stiles=log10(N*((abs(counta.*countd-countb.*countc)-(N/2)).^2)./ 

((counta+countb).*(counta+countc).*(countb+countd).*(countc+countd))); 

Stiles_f=Stiles.'; 

Den=(counta.*countd - countb.*countc)./(sqrt(N.*((counta+countb).*(counta+countc)))); 

Den_f=Den.'; 

 

 

Figure 4.2 Single Coefficient Analysis using program to Find Similarity 
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Table 4.3 : Similarity Values of Different Coefficients 
 

Molecules Tanim Ruse Simple  Bar Cosine Kuls Forbes 
M1 1 0.0767 1 1 1 1 13.04 
M2 0.7556 0.0644 0.97917 0.93647 0.861 0.8613 11.51 
M3 0.62 0.0587 0.96402 0.88936 0.7654 0.7654 9.979 
M4 0.604 0.0578 0.96212 0.88316 0.7531 0.7531 9.818 
M5 0.6327 0.0587 0.96591 0.89465 0.7751 0.7751 10.23 
M6 0.5192 0.0511 0.95265 0.84882 0.6838 0.684 9.143 
M7 0.5769 0.0568 0.95833 0.87172 0.7318 0.7318 9.424 
M8 0.5289 0.0521 0.9536 0.85277 0.692 0.6921 9.193 

 

Molecules Fossum Simpson Pear Yule Stiles Dennis 
M1 1043 1 1 1 3.0178 30.004 
M2 771.43 0.88312 0.84983 0.99644 2.8753 25.55 
M3 608.76 0.76543 0.74594 0.98789 2.7613 22.381 
M4 589.12 0.75309 0.73257 0.98636 2.7454 21.98 
M5 624.17 0.78481 0.75663 0.98918 2.7736 22.725 
M6 484.61 0.7013 0.65822 0.97613 2.6513 19.789 
M7 556.08 0.74074 0.70919 0.98323 2.717 21.256 
M8 496.45 0.70513 0.66688 0.97742 2.6629 20.04 

    
 

After performing similarity searching with different coefficients, the 

similarity values retrieved are not in the same range in terms of number of bit set 

where the values are large for certain coefficients and small for others. To 

standardize these similarity values, normalization was performed. There are many 

ways to achieve normalization. The process of normalization was achieved by 

calculating the z-scores. To calculate the z-scores, the standard deviation σ must be 

calculated first. The equation for z-scores follows:- 

 

 

 

 

 

 

 

 

 

                 Z_score         (4.1) 

Where  

• x is a raw score to be standardized 

• σ is the standard deviation  

• μ is the mean  
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 Table 4.4 shows the similarity value normalized after apply the Z-score 

equation. 

 

Table 4.4: Similarity Values normalization with Z_score 

Tanim Ruse Simple Bar Cosine Kuls 
-0.277 -0.294 -0.2774 -0.27741 -0.2774 -0.2774 
-0.282 -0.294 -0.2778 -0.27854 -0.2799 -0.2799 
-0.284 -0.294 -0.2781 -0.27939 -0.2816 -0.2816 
-0.284 -0.294 -0.2781 -0.2795 -0.2818 -0.2818 
-0.284 -0.294 -0.278 -0.27929 -0.2814 -0.2814 
-0.286 -0.294 -0.2783 -0.28011 -0.2831 -0.2831 
-0.285 -0.294 -0.2782 -0.2797 -0.2822 -0.2822 
-0.286 -0.294 -0.2782 -0.28004 -0.2829 -0.2829 

 
 
The second equation were used in this project it is x` equation, normalization 

step is first consisted. It considered of on the normalization of the domain of the 

variables and it is applied before the file is partitioned (usual normalization in the (0, 

1) interval was applied: x' = (x - min) / (max - min)). 

 

      (4.2) 
 
 
Table 4.5 shows the similarity value normalized after apply the x` equation. 

 
 

Table 4.5: Similarity Values normalization between (0 and 1) 
 

Tanim Ruse Simple  Bar Cosine Kuls Forbes 
1 1 1 1 1 1 1 

0.731595 0.816897 0.86422 0.871107 0.831863 0.830103 0.856126
0.582745 0.732388 0.765465 0.775528 0.716178 0.712649 0.711308
0.565132 0.718303 0.75308 0.762949 0.701247 0.697533 0.696109
0.596635 0.732388 0.777785 0.786261 0.72783 0.72452 0.735192
0.472096 0.619709 0.69135 0.693278 0.617361 0.612872 0.632375
0.535441 0.704218 0.728375 0.739739 0.675439 0.671477 0.658951
0.482659 0.633794 0.697543 0.701292 0.62727 0.622783 0.637086
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Fossum Simpson Pear Yule Stiles Dennis 
1 1 1 1 1 1 

0.732259 0.850004 0.828128 0.992371 0.923276 0.829599 
0.571883 0.698968 0.709224 0.97405 0.861896 0.70836 
0.55252 0.683132 0.693921 0.970772 0.853335 0.693019 
0.587076 0.723839 0.721459 0.976814 0.868519 0.721521 
0.449484 0.616668 0.608827 0.94885 0.802671 0.609196 
0.519946 0.667283 0.667163 0.964065 0.838044 0.66532 
0.461157 0.621583 0.618738 0.951615 0.808916 0.618798 

 
 
The conceptual different between the Z-score and x` equations is that Z-score 

equation normally yielded negative value, whiles x` equation yields the values 

between 0 and 1 and it is settable for this project. 

 
 
The first data represented here is composed of active compounds with 

different degree of the activity for each (1360 rows). As shown in chapter 3 Figure 

3.3, each compound from each part selected as active target (query), all other 

compounds in other parts are assumed to be inactive, in order to determine the 

similarity. The procedure is repeated for other parts. The summarization of single 

coefficients of average percentage of the top 10% for all actives by using 10 different 

queries are shown in Table 4.6 is the percentages of actives obtained.  
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Table 4.6: Summary of Single Coefficient of Average Percentage Top 10% of all 
Actives  

 
 
 The Table above shows the summary of single coefficient among the average 

percentage of top 10% of all actives. The Simple and Forbes are the best single 

coefficients for all 7 actives among the among the top 10% compounds. For details 

of single coefficient of percentage of active by using 10 targets see appendix B. 

 
 

The second data represented here is composed from active compounds with 

different degree of the activity for each of them (1000 rows) as shown in Table 4.2. 

Table 4.7 shows the single coefficients percentages of actives obtained. For more 

details on single coefficient of percentage of active second data, see appendix C. 

 
 

Table 4.7: The Average Percentage of all Actives (Second Data) Using Single 

Coefficient 

THE PERCENTAGE OF 
ACTIVES 

Active 1 Active 2 Active 3 
SINGLE 

COEFFICIENT 
10% 10% 10% 

A
verage  

Jacccard/tanimoto 29.96 14.2 11 18.4 
Russel/rao 28.74 15 9.2 17.6 

Simple 29.55 13.4 12 18.3 
Baroni 30.77 13.8 11 18.5 

Ochiai/cosine 30.36 14.2 11 18.5 

THE PERCENTAGE OF ACTIVES 
Active 

1 
Active 

2 
Active 

3 
Active 

4 
Active 

5 
Active 

6 
Active 

7 SINGLE 
COEFFICIENT 10% 10% 10% 10% 10% 10% 10% 

A
verage 

Jacccard/tanimoto 17 16 15 0.45 6 6 21.5 11.7 
Russel/rao 17 3.9 13 1.35 10 17 20 11.8 

Simple 28 12 16 0.45 6 4.5 21 12.6 
Baroni 20 16 18 0.45 6 3 15.5 11.3 

Ochiai/cosine 17 15 14 0.45 6 7.5 21.5 11.6 
Kulcznski(2) 17 10 13 0.45 6 11 21 11.2 

Forbes 28 12 17 0.45 6 5 15.5 12 
Fossum 17 15 14 0.45 6 8 21.5 11.7 
Simpson 23 3.9 12 0.9 7 18 21.5 12.3 
Pearson 18 16 14 0.45 6 7.5 21 11.9 

Yule 26 14 16 0.4 6 7.5 21.5 13.1 
Stile 18 15 14 0.45 6 6 21 11.5 

Dennis 20 16 14 0.45 6 6 21 11.9 
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Kulcznski(2) 29.96 15 12 19 
Forbes 22.67 13 13 16.2 
Fossum 30.36 14.2 11 18.5 
Simpson 24.29 13.8 13 17 
Pearson 30.36 14.2 11 18.5 

Yule 30.36 14.2 13 19.2 
Stile 30.36 15 11 18.8 

Dennis 30.77 13.8 11 18.5 
 

 
 
 
4.5 Combination of Coefficients Using Fusion Process  

 
 

The 13 groups discussed in Chapter 3 (Table 3.2) were used. Fusion was 

carried out using representative coefficients selected from each of the 13 groups 

based on the study of Salim (2003). 1360 molecules were selected from the database 

and matched in order to determine their similarities. After calculating similarity 

among target (query), the similarity values normalized from the coefficients were 

summed to give a new similarity for each compound when compared to a target and 

find the number of active at the top 10% on whole data they are percentage for each 

combination Table 4.8 show the percentage of active thus obtained for each 

combination.  

 
 
The fusions between coefficients based on linear combinations of similarity 

values after normalizations from different similarity measures were used as a way to 

standardize the data. Although results of some test retrieval experiments have shown 

that the use of similarity values can give slightly better retrieval effectiveness than 

rank values, the fusion using similarity values can be applicable when sources 

combined have similar rank-similarity curves. 

 
 

The fusion used was based on summing procedure which normalized 

similarity values produced by the searches. For each target structure, the 

combinations were sorted into decreasing order of the number of actives retrieved. 

Then the best combination of coefficients on top 10% is obtained. The SUM fusion 

function was used and found to be more effective and efficient. Table 4.8 below 
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shows the summarization of combinations of different selection of 2, 3 and 4 

coefficients on different of all actives presented on Table 4.8. For more details 

information about the combination of different coefficients of the percentage of 

actives obtain for each actives with fusions 2, 3 coefficients, see appendix E. 

 
 

Table 4.8 below shows the summarization of combinations of different 

selection of 2-coefficients (non-weighed) of all actives that presented on Table 4.1. 

As details the combination of different coefficients of the percentage of actives 

obtain for each actives with fusions 2, 3 coefficients, see appendix E. 

 

 

 

 

Table 4.8: Summary of Fusion of 2-Coefficients and the Average Percentage of top 

10% for all actives 

 
  

THE PERCENTAGE OF ACTIVES 
Active 

1 
Active 

2 
Active 

3 
Active 

4 
Active 

5 
Active 

6 
Active 

7 
SINGLE 

COEFFICIENT 10% 10% 10% 10% 10% 10% 10% 

A
verage 

BarFos 19 15 17 0.45 6 5.5 21 12 
TanCos 17 16 15 0.45 6 7 22 11.9 
CosSti 17 15 15 0.45 6 8 22 11.9 
RusFor 16 10 15 0.45 6 11 21 11.4 
TanRus 15 5.6 16 0.45 6 15 21 11.3 
RusCos 15 5.2 17 0.45 6 15 22 11.5 
RusSti 15 5.2 15 0.9 6 15 22 11.3 
ForTan 27 14 17 0.45 6 4.5 19 12.6 
CosFor 27 16 17 0.45 6 4 21 13.1 
ForStil 15 15 17 0.45 6 4.5 20 11.1 

TanSimple 22 12 17 0.45 6 17 20 13.5 
CosFos 17 15 14 0.45 6 7.5 22 11.7 
TanBar 19 16 17 0.45 6 4.5 21 12 

RusSimple 16 15 14 0.45 6 18 20 12.8 
RusKul 15 5.2 15 0.9 6 16 22 11.4 
TanFos 17 16 15 0.45 6 7 22 11.9 
RusFos 15 5.2 15 0.9 6 18 20 11.4 
RusBar 14 11 15 0.45 6 12 21 11.4 
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From Table 4.8, it can be seen that the best combination for 2-coefficients 

fusion the Tanimoto and Simple matching coefficients (TanSimple) are satisfies the 

best average percentage for top 10% of all actives (7) by average value 13.5%. 

 
 
 

Table 4.9 below is the summarization of combinations of different selection 

of 3-coefficients (non-weighed) of all actives. As details the combination of different 

coefficients of the percentage of actives obtain for each actives with fusions              

3-coefficients, see appendix E. 

 
 
 
 
 
 
 
 
Table 4.9 : Summary of Fusion of 3-Coefficients and the Average Percentage of top 

10% for all actives 

 
 
From Table 4.9, it can be seen that the best combination for 3-coefficients 

fusion the Russsell-Rao, Forbes and Cosine Simple coefficients (RusForCos) are 

satisfies the best average percentage for top 10% of all actives (7) by average value 

12.5%. 

 
 
The fusion between coefficients based on linear combinations by using 

ranking from different similarity measures was used, instead of similarity values, as a 

THE PERCENTAGE OF ACTIVES 
Active 

1 
Active 

2 
Active 

3 
Active 

4 
Active 

5 
Active 

6 
Active 

7 
SINGLE 

COEFFICIENT 10% 10% 10% 10% 10% 10% 10% 

A
verage 

TanBarFos 18.8 14.7 15.79 0.45 6 5.5 21.5 11.8 
RusForCos 17.7 11.3 17.29 0.45 6 14 21 12.5 
RusForTan 17.3 12.1 14.29 0.45 6 14 21 12.2 
RusForSti 17.7 11.3 16.54 0.45 6 14 21 12.4 

RusTanCos 14.8 9.96 14.29 0.45 6 13 21 11.4 
RusCosSti 14.8 9.09 15.04 0.45 6 13 20.5 11.3 
ForTanCos 24 15.6 15.04 0.45 6 4 21 12.3 
ForCosSti 24.7 14.3 15.04 0.45 6 4 21 12.2 
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way to standardize the data. Although results of some text retrieval experiments have 

shown that use of similarity values can give slightly better retrieval effectiveness 

than rank values, the fusion using similarity values is only appropriate when sources 

combined have the similar rank-similarity curves.  

 
 

For each target structure, the combinations were sorted into descending order 

of the number of actives retrieved and assigned an ordinal value from 1(best ranking) 

down to last (worst ranking). Consequently, after calculating the similarity for each 

of them, their positions were ranked accordingly. The rank-positions from the 

coefficients were summed to give a new similarity ranking for each compound when 

compared to a target. The SUM fusion function was used as it was found to be the 

most effective. Table 4.10 shows similarity value after order descending and ranking 

positions, the rank-positions from the coefficients were summed to give a new 

similarity ranking for each compound when compared to a target. 

Table 4.10: (a ,b ,c and d) shows similarity value after order descending and 

ranking positions, The rank-positions from the coefficients were summed to give a 

new similarity ranking for each compound when compared to a target. 

 

(a) Shows the Tan,Rus,Simple and Bar coefficients after order descending 

and ranking positions 

 
M

olecules 

Tan  
similarity 

values 

R
ank Position 

M
olecules 

Rus 
similarity 

values 

R
ank Position 

M
olecules 

Simple 
similarity 

values 

R
ank Position 

M
olecules 

Bar 
similarity 

values 

R
ank Position 

M1 1 1 M1 0.07 1 M1 1 1 M1 1 1 
M2 0.756 2 M2 0.06 2 M2 0.979 2 M2 0.936 2 
M5 0.633 3 M3 0.05 3 M5 0.966 3 M5 0.895 3 
M3 0.62 4 M5 0.05 4 M3 0.964 4 M3 0.889 4 
M27 0.62 5 M27 0.05 5 M27 0.964 5 M27 0.889 5 
M4 0.604 6 M4 0.04 6 M4 0.962 6 M4 0.883 6 
M7 0.577 7 M7 0.04 7 M7 0.958 7 M7 0.872 7 
M8 0.529 8 M10 0.04 8 M8 0.954 8 M8 0.853 8 
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(b) Shows the Cos,Kuls,Forbes and Fossum coefficients after order 

descending and ranking positions 

M
olecules 

Cos 
similarity 

values 

R
ank Position 

M
olecules 

Kuls 
similarity 

values 

R
ank Position 

M
olecules 

For 
similarity 

values 

R
ank Position 

M
olecules 

Fos 
similarity 

values 

R
ank Position 

M1 1 1 M1 1 1 M1 13.04 1 M1 1043 1 
M2 0.861 2 M2 0.861 2 M2 11.51 2 M2 771.4 2 
M5 0.775 3 M5 0.775 3 M5 10.23 3 M5 624.2 3 
M3 0.765 4 M3 0.765 4 M3 9.979 4 M3 608.8 4 
M27 0.765 5 M27 0.765 5 M27 9.979 5 M27 608.8 5 
M4 0.753 6 M4 0.753 6 M120 9.899 6 M4 589.1 6 
M7 0.732 7 M7 0.732 7 M4 9.818 7 M7 556.1 7 
M8 0.692 8 M8 0.692 8 M1107 9.545 8 M8 496.5 8 

 

 

(c) Shows the Simpson,Pear,Yule and Stiles coefficients after order 

descending and ranking positions 

 

M
olecules 

Simp 
similarity 

values 

R
ank Position 

M
olecules 

Pear 
similarity 

values 

R
ank Position 

M
olecules 

Yul 
similarity 

values 

R
ank Position 

M
olecules 

Stil 
similarity 

values 

R
ank Position 

M1 1 1 M1 1 1 M1 1 1 M1 3.018 1 
M2 0.883 2 M2 0.85 2 M2 0.996 2 M2 2.875 2 
M5 0.785 3 M5 0.757 3 M5 0.989 3 M5 2.774 3 
M3 0.765 4 M3 0.746 4 M3 0.988 4 M3 2.761 4 
M27 0.765 5 M27 0.746 5 M27 0.988 5 M27 2.761 5 
M4 0.759 6 M4 0.733 6 M120 0.986 6 M4 2.745 6 
M7 0.753 7 M7 0.709 7 M4 0.983 7 M7 2.717 7 
M8 0.741 8 M8 0.667 8 M1107 0.977 8 M8 2.663 8 

 

 
(d) Shows the Dennis coefficient after order descending and ranking position 

and summation on ranking position. 
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M
olecules 

Den 
similarity 

values 

R
ank Position 

Sum
 of R

anking 

R
ank Position 

M1 30 1 13 1 
M2 25.55 2 26 2 
M5 22.73 3 40 3 
M3 22.38 4 47 4 
M27 22.38 5 65 5 
M4 21.98 6 80 6 
M7 21.26 7 94 7 
M8 20.04 8 119 8 
 
  

The single coefficient in Table 4.11 shows the percentage of actives by using 

ranking positions. 

 
 

Table 4.11: The Average Percentage of all Actives (Second Data) Using Single 

Coefficient and Ranking Positions 

THE PERCENTAGE OF 
ACTIVES 

Active 1 Active 2 Active 3 

SINGLE 
COEFFICIENT 

10% 10% 10% 

A
verage  

Jacccard/tanimoto 17 0.862 14.9 10.9 
Russel/rao 17.3 2.586 12.7 10.9 

Simple 28.8 0 15.7 14.8 
Baroni 20.3 0.431 17.9 12.9 

Ochiai/cosine 16.6 0.431 14.2 10.4 
Kulcznski(2) 17 0.431 12.7 10 

Forbes 28.4 0.862 17.2 15.5 
Fossum 16.6 0.431 14.2 10.4 
Simpson 23.2 0.862 11.9 12 
Pearson 17 0.431 14.2 10.5 

Yule 26.2 0.431 15.7 14.1 
Stile 17.7 0.431 14.2 10.8 

Dennis 19.6 0.431 14.2 11.4 
 

 

From Table 4.11, it can be seen that the best single coefficient by using 

ranking position the Forbes coefficients  is satisfies the best average percentage for 

top 10% of all actives by average value 15.5%. 
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In this section, 10 different queries (targets) non-weights were taken for each 

Active top10% average of actives and it was used to obtain the best single 

coefficients. For more details about single coefficients with 10 different queries and 

the percentage of actives obtains for each active, see appendix E. 

 

 

Table 4.12 and Figure 4.3 below show the best single coefficient of active top 

10% their selected similarity. 
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Table 4.12:  The Average Percentage of all Active top 10% of single coefficient 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THE PERCENTAGE OF ACTIVES 
Tan Rus Bar Sim Cos Kul For Fos Per Simp Sti Yul Den 

Active   

10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10%
Active 1 15.9 13.9 18.1 25.8 16.3 17.2 26.3 16.2 17 21.7 17 22.4 18.3 
Active 2 24.5 21 25 21.9 24.4 23.8 24 24.2 24.5 24.8 24.4 24.5 24.6 
Active 3 22.5 17.5 23 20.7 22.2 21.4 21 22.2 21.6 17.3 21.5 20.3 21.6 
Active  4 19.2 15.4 19.2 14.3 19 18.9 15.3 19.1 18.8 15.4 18.8 18.8 18.4 
Active  5 19.9 24.6 16.2 11.8 19.4 17.7 9.4 19.3 18.4 12.2 18.5 13.2 16.3 
Active  6 13.9 10.4 12.2 13.1 14.9 17.6 13 15.2 14.4 19.8 14.6 14.4 14.2 
Active 7 35.7 30.8 35.6 32.6 35.4 35.6 30 35.4 35.6 31.3 35.8 34.9 35.9 
Average 21.7 19.1 21.3 20 21.7 21.7 19.9 21.7 21.5 20.4 21.5 21.2 21.3 

Figure 4.3  The Average percentage of top 10% Actives versus the single coefficients
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In Table 4.12 and Figure 4.3,it clearly shows that Tanimoto,Cosine ,Kulcznski(2) and Fossum  have the best average percentage of 

top 10% among all the Actives (7).The single coefficient has an  average value 21.7. 

 
 

Table 4.13 and Figure 4.4 below shows the Summarization of  the Average Percentage of all Active among the top 10% on 

different combination of non-weights coefficients. 

 
 

Table 4.13: Summarization the Average Percentage of all Active top 10% depends on fusions of coefficients. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

THE PERCENTAGE OF ACTIVES 
Fusion2 Fusion3 Fusion4 

C
osFos 

R
usK

ul 
 

T
anFos 

 

R
usC

os 
 

T
anR

us 
 

T
anB

ar 
 

R
usT

anC
os 

 

R
usForC

os 
 

R
usForT

an
 

ForC
osSti 
 

R
usForSti 

 

T
anB

arC
os

K
ul 

Actives 

10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 
Active 1 14.6 14.7 14.5 15.5 14.6 16 15.1 15.1 15.6 15.1 15.1 17 
Active 2 22.3 22.3 22.7 24.7 22.5 24.3 22.7 23 22.6 22.9 22.6 24.4 
Active 3 20.7 20.4 19.3 22.9 19.5 22.2 21.7 21.9 20.9 21.7 21.1 21.9 
Active  4 17.8 18 18.3 19.8 18.8 19.5 19.6 19.4 19.4 20 19.3 19.7 
Active  5 23.3 23 22.7 18.9 22.8 19.6 21.6 21.5 21.5 21.8 21.5 19 
Active  6 19.7 19.8 20.6 13.3 21.1 14.2 19 18.5 19.2 18.5 19.3 14.3 

Active 7 34.8 34.7 35.4 35.6 34.8 35.6 35.6 35.1 35.1 34.95 
34.9

5 35.1 
Average 21.89 21.84 21.93 21.53 22.01 21.63 22.19 22.1 22 22.14 21.98 21.63 
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In Figure 4.4, it clearly shows that the best combinations of coefficient for 2-

cofficient fusions is the Tanimoto and Russell-Rao(TanRus). It has the best 

percentage of top 10% among the all 7 Actives and average value of 22.01%. The 

worst is Russell-Rao & Cosine (RusCos) with an average of 21.53%. The graph was 

shows that the best combination for 3-coefficients fusion is obtain from Russell-Rao, 

Tanimoto and Cosine (RusTanCos), having the best percentage of top 10% for all 7 

Actives and an average value of 22.19%. The worst is Russell-Rao,Forbes and  

Stile(RusForSti) which both have an average of 21.98%. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.4 The Average Percentage of Top 10% Actives versus the Fusions 

 of Coefficients 
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4.6  Optimization Result of Similarity Coefficients   Fusions by Using GA 

Weights 
 
 

 In this part, different combination or fusion of coefficients were used with 

the GA combinations weights among the top 10% of each Active. For GA validation, 

several single coefficients and combinations of non-weighted coefficients are 

generated. The generated fusions were compared with GA optimized fusions of top 

10% of each Active see appendix F. 

 
 
In this section, 10 different queries were taken and the averages of all Actives 

top10% were used to obtain the best combinations of coefficients. Genetic algorithm 

(GA) is used to combine the coefficients with weights.  

 
 
The summary combinations of coefficients with weights that generated by 

GA as shown in Table 4.14 and Figure 4.5 below are the average percentage of 

actives obtains on top 10%. 
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Table 4.14:  The Average Percentage of all Active top 10% on GA based fusions of coefficients (GA weights) 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

THE PERCENTAGE OF ACTIVES  

Fusion2 Fusion3 
Fusion

4 

Fusion of 
C

oefficients 

C
osFos 

R
usK

ul 
 

T
anFos 

 

R
usC

os 
 

T
anR

us 
 

T
anB

ar 

R
usT

anC
os 

R
usForC

os 
 

R
usForT

an 
 

ForC
osSti 
 

R
usForSti 

 

T
anB

arC
osK

ul 

W
eights 

0.960 and 0.937 

0.972 and 0.960 

0.960 and0.960 

0.972 and 0.960 

0.960 and 0.972 

0.960 and 0.1440 

0.972, 0.960and 
0.960 

0.972, 0.960and 
0.960 

0.972, 0.960and 
0.960 

0.960,0.972 and 
0.960 

0.972, 0.960and 
0.960 

0.972, 
0.1440,0.960and 

0.960 

Actives 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 
Active 1 14.8 14.8 14.3 16.8 14.6 16 15.1 15.1 15.6 15.1 15 17 
Active 2 22.3 22.4 22.7 24.7 22.5 24.3 22.6 23 22.6 22.8 22.6 24.4 
Active 3 20.6 20.4 19.4 23.1 19.6 22.2 21.6 21.9 20.9 21.7 20.7 21.9 
Active  4 18.8 19 19.1 19.8 18.8 19.5 19.4 19.4 19.4 19.3 19.3 19.7 
Active  5 23.3 23 22.8 18.9 22.9 19.5 21.7 21.9 21.5 21.8 21.6 19 
Active  6 19.7 19.8 20.6 13.3 21.2 14.2 19 18.5 19.2 18.4 19.3 14.3 
Active 7 35.6 34.7 35.4 35.5 34.9 35.7 35.6 35.1 35.1 35 35.3 35.5 
Average 22.16 22.01 22.04 21.73 22.1 21.6 22.14 22.13 22.04 22.01 21.97 21.7 
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In Figure 4.5,it clearly shows the best combinations of coefficients by using 

GA based fusion weights that for 2-Coefficients fusions Cosine and Fossum 

(CosFos) are satisfies the best percentage of top 10% Actives (7) by average value 

22.16%.and the worst is Tanimoto and Baroni (TanBar) by 21.6%. And for the best 

combination of 3-coefficients that Russell-Rao , Tanimoto and Cosine (RusTanCos) 

are satisfies the best percentage of top 10% Actives (7) by average value 22.14% and 

the worst Russell-Rao,Forbes and Stile(RusForSti) by 21.97%.Therefore, instead of 

using combinations of 3-coefficients fusion for the best value we can use 

combination of 2-Coefficients fusion as shown in the peak points. Comparisons for 

different coefficient fusions were carried out. The result show that the Tanimoto, 

Cosine, Kulcznski(2) and Fossum coefficients are the best single coefficient. A 

cosine and Fossum coefficient yields the best combination for 2-coefficient fusion 

with the weights of 0.960 and 0.937 respectively. For 3-coefficient fusion Russell-

Rao, Tanimoto and Cosine coefficients of weightings 0.972, 0.960 and 0.960 

respectively gives the best result. The combinations Tanimoto and Cosine 

coefficients perform well and eventually results in large number of actives. Using 

combination with weights ranging between 0.0 and 1.0 generated by genetic 

algorithm, gave the results in better number of active than the non-weighted 

Figure  4.5  The Average Percentage of Top 10% Actives versus the GA based fusions of 

coefficients (GA weights)
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combination. Cosine and Fossum coefficients combined without weights yields an 

average 21.89% among the top 10% compound; whereas when genetic algorithm 

(GA) is used to combine Cosine and Fossum Coefficients with weights of 0.960 and 

0.937 respectively, an average of 22.16% among the top 10% compound is obtained. 
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CHAPTER 5 
 

 

 

CONCLUSION 

 

 

 

 

5.1 Introduction  
 
 

This chapter primarily focuses on general findings of the results, suggestion 

and recommendation for future works and overall summary about this project. 

Preliminary result on the retrieval chemical compounds from chemical databases 

using different similarity measures based on different similarity coefficients and 

molecular representations have been discussed. 

    
 
Firstly, after applying retrieval from chemical database to find the active 

compounds using similarity coefficient, it was found that Tanimoto,Cosine , 

Kulcznski(2) and Fossum  coefficient are the best single coefficient. The Russell-

Rao,Forbes,Simple matching and Simpson coefficient were found to be the worst. 

This clearly indicates that the similarity measures between molecules depend on 

different factor and each factor has different of degree of effect. As such, the need for 

combination with other coefficients is essential, therefore; fusion will get better 

similarity.  
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Secondly, the power of GA is that it provides diversity of visible solutions 

combination   which will eventually leads to high accurate result for the problem at 

hand .However; GA needs a proper parameter tuning to achieve a good result. 

 
 
GA is used to find the best combination of coefficients. The result is based on 

the input data which are the similarity value normalized or ranking position and the 

output data which are the number of actives that represents coefficient and 

combination of several coefficients based on the number of actives yield for each 

coefficient. 

 
 
It has been proven that the best combination can be satisfied by using 2-

coefficients fusion Cosine and Fossum coefficients with weights (0.960 and 0.937), 

and the same for 3-coefficients fusion Russell-Rao , Tanimoto and  Cosine with 

weights (0.972, 0.960 and 0.960). 

 
 
Finally, the result of this research shows that GA optimizes a combination 

which increases the number of active that strengthens accuracy of the solution. By 

comparing GA weighting approach with non-weighting, it was found that the GA 

improved the result up to 10% on average for all the 7 actives. GA locates suitable 

weights by 150 generations with a little improvement in weights achieved by 1500 

generation.  

 
 
 
 

5.2 Recommendation  
 
  

Based on the above facts, it is recommended that different sets of GA 

parameters tuning is tested. For instance, by introducing the concept of migrations 

that will share population establishment by loading it into different machine. In 

addition, using different method for crossover (uniform) operator keeps the 

probability between (0.60 – 0.90), will subsequently enhance the searching capability 

for suboptimal weights. 
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More input data can be considered to find more effective result in training 

and testing data using GA such as the size of database and number of actives in 

database.  

 
 
 
 
5.3 Project Advantage  
 
 

The followings are some advantages that can be found in this project:  

 
i. To give some exposure to other researcher on applying genetic 

algorithm in finding ideal weights for combination of coefficients to 

be used in performing similarity searching.  

 
 

ii. It has clearly demonstrated that it is absolutely possible to use genetic 

algorithm (GA) in determining the ideal weights to be in performing 

similarity searching. 

 
 

iii. To give ideas to other researcher to do more research on the potential 

of intelligent techniques in the field of chemoinformatics.  

 

 

 
 
5.4 Summary 
 
 

Overall, this project meets the aim, objective and scope that have been 

outlined. Genetic algorithm can be used for optimizing combination of similarity 

measures for chemical database retrieval and perform similarity searching. This is 

done when there are many selection of good coefficient to use and need to find the 

most perfect and suitable coefficient to be used. 
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Table 1: GROUPS AND ACTIVITIES OF THE DATA 

S.No  Activity  No. molecules  
1  Interacting on 5HT receptor 

5HT Antagonists 48  
5HT1 agonists 66  

5HT1C agonists 57  

 

5HT1D agonists 100  
2  Antidepressants 

Mao A inhibitors 71  
Mao B inhibitors 161 

3  Antiparkinsonians 
Dopamine (D1) agonists 32   
Dopamine (D2) agonists 102  

4  Antiallergic/antiasthmatic 
Adenosine A3 
antagonists 

73   

Leukotine B4 antagonists 150  
5  Agents for Heart Failure  

 Phosphodiesterase 
inhibitors 

100  

6  AntiArrythmics 
Potassium channel 

blockers 
100   

Calcium channel blockers 100  
7  Antihypertensives 

ACE inhibitors 100  
Adrenergic (alpha 2) 

blockers 
100  

 

TOTLE 1360 
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APPENDIX B 

PERCENTAGE OF ACTIVES USING DIFFERENT SINGLE COEFFICIENT 
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Table 1: The percentage of Active 1 using single coefficient 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 

Table 2: The percentage of Active 2 using single coefficient 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THE PERCENTAGE OF ACTIVES SINGLE 
COEFFICIENT 10% 20% 30% 50% 80% 100% 
Jacccard/tanimoto 17 36 51 76 97 100 

Russel/rao 17 24 37 57 89 100 
Simple 28 43 58 76 97 100 
Baroni 20 38 54 80 99 100 

Ochiai/cosine 17 37 55 76 97 100 
Kulcznski(2) 17 38 55 75 97 100 

Forbes 28 43 57 80 99 100 
Fossum 17 37 55 76 97 100 
Simpson 23 41 53 73 93 100 
Pearson 18 38 55 78 98 100 

Yule 26 41 58 80 99 100 
Stile 18 37 55 78 98 100 

Dennis 20 39 55 78 98 100 

THE PERCENTAGE OF ACTIVES SINGLE 
COEFFICIENT 10% 20% 30% 50% 80% 100% 
Jacccard/tanimoto 16 25 30 48 88 100 

Russel/rao 3.9 20 30 52 88 100 
Simple 12 30 39 49 85 100 
Baroni 16 26 31 48 87 100 

Ochiai/cosine 15 23 30 47 88 100 
Kulcznski(2) 10 22 29 45 88 100 

Forbes 12 25 34 49 87 100 
Fossum 15 24 30 47 88 100 
Simpson 3.9 21 31 52 88 100 
Pearson 16 24 30 47 88 100 

Yule 14 23 29 47 89 100 
Stile 15 24 29 47 89 100 

Dennis 16 24 30 48 89 100 
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Table 3: The percentage of Active 3 using single coefficient 
 

THE PERCENTAGE OF ACTIVES SINGLE 
COEFFICIENT 10% 20% 30% 50% 80% 100% 
Jacccard/tanimoto 15 37 53 65 83 100 

Russel/rao 13 38 44 62 87 100 
Simple 16 29 39 58 83 100 
Baroni 18 35 47 66 84 100 

Ochiai/cosine 14 39 52 67 83 100 
Kulcznski(2) 13 39 47 67 83 100 

Forbes 17 32 47 66 84 100 
Fossum 14 39 51 67 83 100 
Simpson 12 38 43 62 87 100 
Pearson 14 37 53 66 83 100 

Yule 16 37 51 66 84 100 
Stile 14 38 54 65 83 100 

Dennis 14 38 54 65 83 100 
 

 
 

Table 4: The percentage of Active 4 using single coefficient 
 

THE PERCENTAGE OF ACTIVES SINGLE 
COEFFICIENT 10% 20% 30% 50% 80% 100% 
Jacccard/tanimoto 0.45 0.9 1.79 8.52 61 100 

Russel/rao 1.35 2.24 4.93 21.5 67.7 100 
Simple 0.45 1.35 3.14 17.9 62.8 100 
Baroni 0.45 0.45 1.35 8.07 59.6 100 

Ochiai/cosine 0.45 0.9 1.79 8.07 61.4 100 
Kulcznski(2) 0.45 0.45 1.79 8.52 61.9 100 

Forbes 0.45 1.35 2.24 13.5 60.5 100 
Fossum 0.45 0.9 1.79 8.52 61 100 
Simpson 0.9 1.35 2.24 8.07 59.6 100 
Pearson 0.45 0.45 1.79 7.17 60.5 100 

Yule 0.4 0.45 1.79 8.52 58.3 100 
Stile 0.45 0.45 1.79 7.17 60.5 100 

Dennis 0.45 0.45 1.35 7.62 60.1 100 
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Table 5: The percentage of Active 5 using single coefficient 
 
 

THE PERCENTAGE OF ACTIVES SINGLE 
COEFFICIENT 10% 20% 30% 50% 80% 100% 
Jacccard/tanimoto 6 16 31 50 66 100 

Russel/rao 10 28 47 54 90 100 
Simple 6 13 17 25 37 100 
Baroni 6 16 24 43 60 100 

Ochiai/cosine 6 16 31 50 67 100 
Kulcznski(2) 6 16 31 50 61 100 

Forbes 6 13 18 31 57 100 
Fossum 6 16 31 50 67 100 
Simpson 7 19 32 51 58 100 
Pearson 6 16 27 47 61 100 

Yule 6 16 27 47 61 100 
Stile 6 14 20 42 57 100 

Dennis 6 16 25 46 60 100 
 
 

Table 6: The percentage of Active 6 using single coefficient 
 
 

THE PERCENTAGE OF ACTIVES SINGLE 
COEFFICIENT 10% 20% 30% 50% 80% 100% 
Jacccard/tanimoto 6 20 26.5 44 71.5 100 

Russel/rao 17 27 30 42.5 76 100 
Simple 4.5 9 15 34.5 64.5 100 
Baroni 3 11.5 24.5 44 71 100 

Ochiai/cosine 7.5 22 28 42.5 70 100 
Kulcznski(2) 11 22.5 29.5 42.5 69 100 

Forbes 5 8 14 37 70 100 
Fossum 8 22 28 43 69.5 100 
Simpson 18 25 32 43 68.5 100 
Pearson 7.5 19.5 27 43 69 100 

Yule 7.5 19.5 27 43.5 69 100 
Stile 6 12.5 25 45.5 73 100 

Dennis 6 20 26.5 44 71.5 100 
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Table 7: The percentage of Active 7 using single coefficient 
 
 
 THE PERCENTAGE OF ACTIVES SINGLE 

COEFFICIENT 10% 20% 30% 50% 80% 100% 
Jacccard/tanimoto 21.5 20 60 49 75 100 

Russel/rao 20 20 52 42 74 100 
Simple 21 23 69 58 87 100 
Baroni 15.5 22 58 52 76 100 

Ochiai/cosine 21.5 22 60 51 75 100 
Kulcznski(2) 21 22 62 53 79 100 

Forbes 15.5 25 72 58 85 100 
Fossum 21.5 21 60 51 75 100 
Simpson 21.5 25 72 58 85 100 
Pearson 21 22 60 53 78 100 

Yule 21.5 24 71 55 82 100 
Stile 21 22 61 53 78 100 

Dennis 21 23 62 54 78 100 
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PERCENTAGE OF ACTIVES USING DIFFERENT SINGLE COEFFICIENT 

SECOND DATASET AND RANKING POSITION 
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Table 1: The Percentage of Active 1(Second Data) Using Single Coefficient 

 

THE PERCENTAGE OF ACTIVES SINGLE 
COEFFICIENT 10% 20% 30% 50% 80% 100% 
Jacccard/tanimoto 29.96 34 41.7 64.8 87.9 100 

Russel/rao 28.74 34.4 44.5 68.8 90.7 100 
Simple 29.55 37.2 41.3 50.2 76.1 100 
Baroni 30.77 35.2 40.9 61.5 84.2 100 

Ochiai/cosine 30.36 34.8 40.1 62.3 85 100 
Kulcznski(2) 29.96 34.4 40.5 60.3 83 100 

Forbes 22.67 33.6 40.1 49.4 76.9 100 
Fossum 30.36 34.8 40.1 62.3 85.4 100 
Simpson 24.29 34.8 39.3 48.6 75.7 100 
Pearson 30.36 34.8 40.9 60.7 83.4 100 

Yule 30.36 35.2 40.9 51 79.8 100 
Stile 30.36 34.8 40.1 60.7 83.4 100 

Dennis 30.77 35.2 40.9 59.5 83 100 
 

 

Table 2: The percentage of Active 2(second data) using single coefficient. 
 

THE PERCENTAGE OF ACTIVES SINGLE 
COEFFICIENT 10% 20% 30% 50% 80% 100% 
Jacccard/tanimoto 14.2 26.5 39.1 61.26 86.2 100 

Russel/rao 15 23.3 37.5 61.26 87 100 
Simple 13.4 23.7 34.4 59.29 86.6 100 
Baroni 13.8 26.1 38.7 59.29 87 100 

Ochiai/cosine 14.2 26.9 38.3 60.08 86.6 100 
Kulcznski(2) 15 27.7 39.1 61.26 87 100 

Forbes 13 24.5 38.3 58.89 87 100 
Fossum 14.2 26.9 37.9 60.08 87 100 
Simpson 13.8 26.1 37.9 59.68 84.6 100 
Pearson 14.2 26.9 38.3 61.66 87.7 100 

Yule 14.2 26.5 38.3 61.66 87.4 100 
Stile 15 26.1 38.7 59.29 87 100 

Dennis 13.8 26.5 38.7 61.26 88.1 100 
 
 

Table 3: The Percentage of Active 3(Second Data) Using Single Coefficient. 
 

THE PERCENTAGE OF ACTIVES SINGLE 
COEFFICIENT 10% 20% 30% 50% 80% 100% 
Jacccard/tanimoto 11 20 30 49 75 100 

Russel/rao 9.2 20 26 42 74 100 
Simple 12 23 35 58 87 100 
Baroni 11 22 29 52 76 100 

Ochiai/cosine 11 22 30 51 75 100 



100 
 

 

Kulcznski(2) 12 22 31 53 79 100 
Forbes 13 25 36 58 85 100 
Fossum 11 21 30 51 75 100 
Simpson 13 25 36 58 85 100 
Pearson 11 22 30 53 78 100 

Yule 13 24 36 55 82 100 
Stile 11 22 30 53 78 100 

Dennis 11 23 31 54 78 100 
 

 
Table 4 : The Percentage of Actives in Active1 by using Ranking Positions 

 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

Table 5: The Percentage of Actives in Active2 by using Ranking Positions 

 

 

 

 

 

 

 

 

 

 

 

 

THE PERCENTAGE OF ACTIVES SINGLE 
COEFFICIENT 10% 20% 30% 50% 80% 100% 
Jacccard/tanimoto 17 36.5 50.6 75.6 96.7 100 

Russel/rao 17.3 24.4 36.9 56.8 89.3 100 
Simple 28.8 43.9 57.9 76.8 97 100 
Baroni 20.3 38.7 54.6 80.4 99.3 100 

Ochiai/cosine 16.6 37.3 55 76.4 96.7 100 
Kulcznski(2) 17 39.1 55.4 75.3 97 100 

Forbes 28.4 43.5 56.8 80.1 98.9 100 
Fossum 16.6 37.6 54.6 76.4 96.7 100 
Simpson 23.2 41 53.1 73.1 92.6 100 
Pearson 17 38 55 78.2 97.8 100 

Yule 26.2 40.6 57.9 80.1 99.3 100 
Stile 17.7 37.6 55 78.2 97.8 100 

Dennis 19.6 39.5 55 78.2 98.2 100 

THE PERCENTAGE OF ACTIVES SINGLE 
COEFFICIENT 10% 20% 30% 50% 80% 100% 
Jacccard/tanimoto 0.862 11.2 21.1 42.67 76.3 100 

Russel/rao 2.586 11.6 25.9 49.57 75.9 100 
Simple 0 6.03 23.3 47.41 86.6 100 
Baroni 0.431 11.2 20.7 43.53 78 100 

Ochiai/cosine 0.431 8.62 19.8 42.67 76.7 100 
Kulcznski(2) 0.431 6.47 19.4 42.67 74.6 100 

Forbes 0.862 5.17 18.1 49.57 85.8 100 
Fossum 0.431 8.62 20.3 47.41 76.7 100 
Simpson 0.862 4.31 10.8 43.53 79.3 100 
Pearson 0.431 8.19 19.8 38.79 76.3 100 

Yule 0.431 5.6 20.3 43.97 81.9 100 
Stile 0.431 8.19 19.8 45.26 76.3 100 

Dennis 0.431 8.19 20.7 45.69 78 100 
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Table 6: The Percentage of Actives in Active3 by using Ranking Positions 

 

 
THE PERCENTAGE OF ACTIVES SINGLE 

COEFFICIENT  10% 20% 30% 50% 80% 100% 
Jacccard/tanimoto 14.9 36.6 53 64.9 82.8 100 

Russel/rao 12.7 37.3 43.3 61.2 86.6 100 
Simple 15.7 29.1 38.8 57.5 82.8 100 
Baroni 17.9 34.3 47 65.7 83.6 100 

Ochiai/cosine 14.2 38.8 51.5 66.4 82.8 100 
Kulcznski(2) 12.7 38.8 47 66.4 82.1 100 

Forbes 17.2 31.3 46.3 65.7 83.6 100 
Fossum 14.2 38.8 50.7 66.4 82.8 100 
Simpson 11.9 38.1 41.8 61.2 86.6 100 
Pearson 14.2 36.6 53 65.7 82.8 100 

Yule 15.7 35.8 50 64.9 83.6 100 
Stile 14.2 37.3 53 64.2 82.8 100 

Dennis 14.2 37.3 53 64.2 82.1 100 
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APPENDIX D 

PERCENTAGE OF ACTIVES USING DIFFERENT FUSION 

COEFFICIENTS 
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Table 1 : Fusion of 2-Coefficients on Active1 
 

 
 

Table 1 : Fusion of 2-Coefficients on Active2 

 
 
 

THE PERCENTAGE OF ACTIVES FUSION 
COEFFICIENTs 10% 20% 30% 50% 80% 100%

BarFos 19 37 55 80 99 100 
TanCos 17 37 53 76 97 100 
CosSti 17 38 56 77 97 100 
RusFor 16 28 43 62 91 100 
TanRus 15 28 43 61 91 100 
RusCos 15 28 43 62 92 100 
RusSti 15 29 45 65 93 100 
ForTan 27 41 57 82 99 100 
CosFor 27 40 58 81 99 100 
ForStil 15 28 43 61 91 100 

TanSimple 22 40 57 81 99 100 
CosFos 17 37 55 76 97 100 
TanBar 19 36 55 80 99 100 

RusSimple 16 37 51 78 99 100 
RusKul 15 28 43 63 93 100 
TanFos 17 37 53 76 96 100 
RusFos 15 28 43 61 91 100 
RusBar 14 33 48 68 94 100 

THE PERCENTAGE OF ACTIVES FUSION 
COEFFICIENTs 10% 20% 30% 50% 80% 100% 

BarFos 15 23.8 30.74 48.92 89.18 100 
TanCos 16 24.7 30.3 48.05 88.31 100 
CosSti 15 24.2 29.87 46.75 88.31 100 
RusFor 10 22.9 30.3 46.75 88.31 100 
TanRus 5.6 24.2 29.44 47.62 87.45 100 
RusCos 5.2 24.2 29.44 47.62 87.88 100 
RusSti 5.2 23.8 29 46.75 88.31 100 
ForTan 14 24.2 30.74 48.48 88.31 100 
CosFor 16 23.4 30.74 48.05 89.18 100 
ForStil 15 24.2 30.74 48.05 89.18 100 

TanSimple 12 25.5 34.63 51.52 82.25 100 
CosFos 15 23.8 29.87 46.75 88.31 100 
TanBar 16 25.1 31.6 49.35 89.18 100 

RusSimple 15 24.7 30.74 48.48 87.45 100 
RusKul 5.2 23.8 30.3 47.19 87.45 100 
TanFos 16 24.2 29.87 47.62 88.31 100 
RusFos 5.2 23.4 29.87 47.19 87.88 100 
RusBar 11 22.9 29 46.75 88.31 100 
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Table 3: Fusion of 2-Coefficients on Active3 

 

 
 

Table 4: Fusion of 2-Coefficients on Active4 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

THE PERCENTAGE OF ACTIVES FUSION 
COEFFICIENTs 10% 20% 30% 50% 80% 100% 

BarFos 17 37 52 66 85 100 
TanCos 15 38 54 65 83 100 
CosSti 15 39 54 67 83 100 
RusFor 15 38 42 63 88 100 
TanRus 16 38 45 65 86 100 
RusCos 17 38 46 66 86 100 
RusSti 15 38 45 67 86 100 

ForTan 17 35 50 66 85 100 
CosFor 17 37 51 65 84 100 
ForStil 17 36 51 66 84 100 

TanSimple 17 31 45 64 84 100 
CosFos 14 39 52 67 83 100 
TanBar 17 36 51 66 85 100 

RusSimple 14 38 53 65 84 100 
RusKul 15 38 42 64 86 100 
TanFos 15 37 54 65 83 100 
RusFos 15 38 42 63 88 100 
RusBar 15 38 48 67 83 100 

THE PERCENTAGE OF ACTIVES FUSION 
COEFFICIENTs 10% 20% 30% 50% 80% 100% 

BarFos 0.45 0.45 1.79 7.62 59.6 100 
TanCos 0.45 0.9 1.79 8.52 61.4 100 
CosSti 0.45 0.9 1.79 8.07 61.4 100 
RusFor 0.45 0.45 1.35 8.07 61.4 100 
TanRus 0.45 1.35 3.59 14.8 63.7 100 
RusCos 0.45 1.35 3.59 13.5 61.9 100 
RusSti 0.9 1.35 4.04 14.8 61.9 100 
ForTan 0.45 0.45 1.79 9.42 60.1 100 
CosFor 0.45 0.9 1.79 8.07 61.4 100 
ForStil 0.45 0.9 1.79 8.07 61.4 100 

TanSimple 0.45 0.45 1.35 11.2 62.8 100 
CosFos 0.45 0.9 1.79 8.07 61.4 100 
TanBar 0.45 0.45 1.79 7.17 60.1 100 

RusSimple 0.45 0.9 1.79 7.17 58.3 100 
RusKul 0.9 1.35 3.14 12.6 61.4 100 
TanFos 0.45 0.9 1.79 8.52 61 100 
RusFos 0.9 1.35 3.59 14.8 63.7 100 
RusBar 0.45 1.35 3.14 10.8 61 100 
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Table 5: Fusion of 2-Coefficients on Active5 

 

 
 

Table 6: Fusion of 2-Coefficients on Active6 
 

 

THE PERCENTAGE OF ACTIVES FUSION 
COEFFICIENTs 10% 20% 30% 50% 80% 100% 

BarFos 6 16 26 46 60 100 
TanCos 6 16 31 50 67 100 
CosSti 6 16 31 48 61 100 
RusFor 6 16 28 49 61 100 
TanRus 6 30 44 52 85 100 
RusCos 6 29 43 51 78 100 
RusSti 6 27 43 52 70 100 
ForTan 6 14 20 35 58 100 
CosFor 6 14 20 39 58 100 
ForStil 6 14 20 38 58 100 

TanSimple 6 15 20 32 52 100 
CosFos 6 16 31 50 61 100 
TanBar 6 16 26 46 62 100 

RusSimple 6 16 26 44 58 100 
RusKul 6 29 42 51 76 100 
TanFos 6 16 31 50 67 100 
RusFos 6 29 44 52 85 100 
RusBar 6 21 42 52 70 100 

THE PERCENTAGE OF ACTIVES FUSION 
COEFFICIENTs 10% 20% 30% 50% 80% 100% 

BarFos 5.5 16 27 44 70 100 
TanCos 7 21 27.5 44 70.5 100 
CosSti 8 21 27.5 44 69.5 100 
RusFor 11 22 28.5 43 69 100 
TanRus 15 25 31.5 42 77 100 
RusCos 15 25 31 44 74 100 
RusSti 15 24 31.5 45 72 100 

ForTan 4.5 7.5 17 43 71.5 100 
CosFor 4 8 20.5 43 71.5 100 
ForStil 4.5 7.5 20 43 72 100 

TanSimple 17 24 30.5 42 69 100 
CosFos 7.5 22 28 43 69.5 100 
TanBar 4.5 15 26 44 70 100 

RusSimple 18 28.5 32.5 41 70 100 
RusKul 16 25 31.5 44 73.5 100 
TanFos 7 21 27.5 44 70.5 100 
RusFos 18 27 30 43 76 100 
RusBar 12 22.5 31.5 46 71.5 100 
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Table 7: Fusion of 2-Coefficients on Active7 

 

 

THE PERCENTAGE OF ACTIVES FUSION 
COEFFICIENTs 10% 20% 30% 50% 80% 100% 

BarFos 21 29 36.5 52 84 100 
TanCos 22 30 37.5 53 83 100 
CosSti 22 31 38 53 81.5 100 
RusFor 21 31.5 38.5 54 82 100 
TanRus 21 31.5 37.5 56 79 100 
RusCos 22 31 38 55 79 100 
RusSti 22 31 38 56 78.5 100 

ForTan 19 30 36 49 83.5 100 
CosFor 21 30.5 37 52 85.5 100 
ForStil 20 30.5 36 51 86 100 

TanSimple 20 31 38 52 83.5 100 
CosFos 22 31.5 38.5 55 81.5 100 
TanBar 21 30.5 37.5 52 85 100 

RusSimple 20 33.5 39.5 55 77 100 
RusKul 22 32 38.5 56 78.5 100 
TanFos 22 29.5 37 53 84 100 
RusFos 20 33.5 39.5 55 74.5 100 
RusBar 21 31.5 37.5 56 79 100 



107 
 

 

Table 8: Fusion of 3-Coefficients on Active1 

 
 

Table 9: Fusion of 3-Coefficients on Active2 
 
 
 
 
 
 
 

 
 

 

 

 
 

Table 10: Fusion of 3-Coefficients on Active3 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 

THE PERCENTAGE OF ACTIVES FUSION 
COEFFICIENTs 10% 20% 30% 50% 80% 100% 

TanBarFos 18.8 36.2 54.61 79.34 98.89 100 
RusForCos 17.7 39.1 55.72 76.01 97.42 100 
RusForTan 17.3 38 55.72 76.38 97.42 100 
RusForSti 17.7 39.1 54.98 77.49 97.42 100 

RusTanCos 14.8 32.5 46.49 66.05 92.99 100 
RusCosSti 14.8 32.1 47.6 70.48 93.73 100 
ForTanCos 24 39.9 56.83 79.34 99.26 100 
ForCosSti 24.7 39.1 56.46 79.7 99.26 100 

THE PERCENTAGE OF ACTIVES FUSION 
COEFFICIENTs 10% 20% 30% 50% 80% 100% 

TanBarFos 14.7 24.2 30.74 48.92 88.31 100 
RusForCos 11.3 22.9 29.44 45.02 87.88 100 
RusForTan 12.1 22.9 29 45.45 87.88 100 
RusForSti 11.3 22.9 29.44 45.89 88.31 100 

RusTanCos 9.96 24.2 29 47.19 87.88 100 
RusCosSti 9.09 24.2 29.44 47.19 88.31 100 

ForTanCos 15.6 23.8 30.74 48.48 89.61 100 
ForCosSti 14.3 23.8 29.87 48.05 90.48 100 

THE PERCENTAGE OF ACTIVES FUSION  
COEFFICIENT 10% 20% 30% 50% 80% 100% 

TanBarFos 15.79 37.59 45.11 65.4 86.5 100 
RusForCos 17.29 30.83 45.11 64.7 84.2 100 
RusForTan 14.29 39.1 51.88 66.9 83.5 100 
RusForSti 16.54 36.09 51.13 66.2 85 100 

RusTanCos 14.29 37.59 52.63 65.4 84.2 100 
RusCosSti 15.04 37.59 42.11 64.7 86.5 100 

ForTanCos 15.04 36.84 54.14 65.4 83.5 100 
ForCosSti 15.04 37.59 42.11 63.2 88 100 
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Table 11: Fusion of 3-Coefficients on Active4 

 
 
 
 
 
 
 
 
 
 
 
 

 
Table 12: Fusion of 3 Coefficients on Active5 

 
 
 
 
 
 
 
 
 
 

 

 

 

Table 13: Fusion of 3-Coefficients on Active6 
 
 
 
 
 
 

 
 

 
 
 
 

 
 
 
 
 
 
 

THE PERCENTAGE OF ACTIVES FUSION  
COEFFICIENT 10% 20% 30% 50% 80% 100% 

TanBarFos 0.45 0.45 1.79 8.07 61 100 
RusForCos 0.45 1.35 3.14 10.8 60.5 100 
RusForTan 0.45 1.35 3.14 11.2 61 100 
RusForSti 0.45 1.35 3.59 11.7 60.5 100 

RusTanCos 0.45 1.35 3.14 10.8 60.5 100 
RusCosSti 0.45 1.35 3.59 10.8 60.5 100 

ForTanCos 0.45 1.35 3.59 11.7 60.5 100 
ForCosSti 0.45 0.45 1.79 8.07 61 100 

THE PERCENTAGE OF ACTIVES FUSION  
COEFFICIENT 10% 20% 30% 50% 80% 100% 

TanBarFos 6 16 26 46 62 100 
RusForCos 6 23 42 52 77 100 
RusForTan 6 23 41 51 78 100 
RusForSti 6 23 41 52 70 100 

RusTanCos 6 23 42 59 77 100 
RusCosSti 6 21 41 51 69 100 

ForTanCos 6 15 21 43 59 100 
ForCosSti 6 14 21 43 59 100 

THE PERCENTAGE OF ACTIVES FUSION  
COEFFICIENT 10% 20% 30% 50% 80% 100% 

TanBarFos 5.5 18 27 44 69.5 100 
RusForCos 14 23.5 32 45 79 100 
RusForTan 14 23.5 32 45.5 74 100 
RusForSti 14 23 32 45 71.5 100 

RusTanCos 13 23 32 45 73 100 
RusCosSti 13 23 31.5 45 72 100 

ForTanCos 4 11.5 24.5 44.5 70.5 100 
ForCosSti 4 12 24.5 44 70 100 
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Table 14: Fusion of 3-Coefficients on Active7 

 
 
 
 
 
 
 
 
 
 

 

 

 

THE PERCENTAGE OF ACTIVES FUSION  
COEFFICIENT 10% 20% 30% 50% 80% 100% 

TanBarFos 21.5 30 35 52.5 82 100 
RusForCos 21 32 38.5 55.5 79 100 
RusForTan 21 32 38.5 56 79 100 
RusForSti 21 31.5 37.5 51.5 84.5 100 

RusTanCos 21 31.5 37.5 51.5 84.5 100 
RusCosSti 20.5 32 37.5 55 79 100 

ForTanCos 21 31.5 37.5 51.5 85 100 
ForCosSti 21 31.5 38.5 52 86 100 
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APPENDIX E 

PERCENTAGE AVERAGE OF ACTIVES USING DIFFERENT 10 QUERIES 

FOR SINGLE COEFFICIENTS 
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Table 1: The Percentage of Actives Obtain For Each Active with Average of 10 Target(Active 1) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THE PERCENTAGE OF ACTIVES 
Tan Rus Bar Sim Cos Kul For Fos Per Simp Sti Yul Den 

Different 
Query  

10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10%
Query 1 13.7 17.3 19.9 28.4 16.6 17 28.4 16.6 17.7 23.2 17.7 26.2 19.6 
Query 2 18.5 17.3 19.2 23.2 16.2 16.6 22.9 16.2 17.7 21.4 17.3 22.1 19.6 
Query 3 14 14.4 17 26.9 18.1 17.7 26.9 18.1 17.7 22.1 17.7 21.8 17.7 
Query 4 14.4 14.4 16.6 26.2 17.3 18.5 26.6 17.3 17.7 21 17.7 20.3 17.7 
Query 5 13.7 14 18.1 29.9 17.3 18.1 29.5 17.3 16.6 21.4 16.6 23.2 17 
Query 6 16.6 12.5 18.1 25.8 14.8 15.9 26.6 14.4 15.5 19.2 15.5 21.4 18.1 
Query 7 17 12.2 17 26.9 14.4 16.2 28.4 14.4 15.9 23.6 15.9 22.5 17.3 
Query 8 17.3 11.4 19.9 26.6 14.4 17.7 26.6 14 17.3 21 17.3 21.8 20.3 
Query 9 17 13.3 20.3 24.7 18.8 18.5 27.7 18.8 19.2 23.6 19.2 24.4 19.9 
Query 10 17 12.5 15.1 18.8 15.1 15.5 19.2 14.7 14.8 19.9 15.1 20.3 15.5 
Average 15.9 13.9 18.1 25.8 16.3 17.2 26.3 16.2 17 21.7 17 22.4 18.3 
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Table 2: The Percentage of Actives Obtain For Each Active with Average of 10 Target(Active 2) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THE PERCENTAGE OF ACTIVES 
Tan Rus Bar Sim Cos Kul For Fos Per Simp Sti Yul Den 

Different 
Query  

10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10%
Query 1 16.5 3.9 15.6 3.9 14.7 10.8 11.7 14.7 15.6 11.7 15.2 13.4 15.6 
Query 2 26 32 25.1 32 26.8 26.8 25.5 26.4 26.4 26.8 26.4 26.4 26.8 
Query 3 39.8 30.3 43.7 32.5 39.4 38.1 38.5 39.4 40.7 39.4 40.7 44.2 42 
Query 4 29.9 19.9 21.6 19.9 21.2 21.2 22.9 21.2 21.2 23.8 21.2 21.2 21.2 
Query 5 21.2 32 25.1 32 26.8 26.8 25.5 26.4 26.4 26.8 26.4 26.4 26.8 
Query 6 26 26 30.3 26.8 29.9 30.7 28.6 29.9 29.9 29.4 29.9 29.9 29.9 
Query 7 29 23.4 28.6 25.5 29 29 25.5 29 29 27.7 29 28.6 28.6 
Query 8 16 10.4 17.3 10.4 15.2 15.2 15.6 14.7 15.2 14.7 15.2 15.2 15.2 
Query 9 22.9 16 23.4 19.9 22.5 22.5 26 22.5 22.5 28.6 22.5 22.9 22.5 
Query 10 17.7 15.6 19 15.6 17.3 16.5 19.9 17.3 17.7 19.5 17.7 16.9 17.7 
Average 24.5 21 25 21.9 24.4 23.8 24 24.2 24.5 24.8 24.4 24.5 24.6 
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Table 3 : The Percentage of Actives Obtain For Each Active with Average of 10 Target (Active 3) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THE PERCENTAGE OF ACTIVES 
Tan Rus Bar Sim Cos Kul For Fos Per Simp Sti Yul Den 

Different 
Query  

10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10%
Query 1 14.9 12.7 17.9 15.7 14.2 12.7 17.2 14.2 14.2 11.9 14.2 15.7 14.2 
Query 2 5.22 11.9 6.72 5.22 5.97 6.72 5.22 5.97 5.22 11.9 5.22 5.22 5.22 
Query 3 8.21 15.7 11.2 5.97 8.96 8.21 7.46 8.96 8.96 15.7 5.97 8.21 8.96 
Query 4 31.3 17.2 29.9 28.4 32.1 33.6 29.1 32.8 30.6 18.7 32.1 26.9 30.6 
Query 5 34.3 20.9 32.1 30.6 34.3 30.6 28.4 34.3 32.8 21.6 32.8 28.4 32.8 
Query 6 34.3 21.6 34.3 27.6 33.6 32.8 27.6 33.6 32.8 21.6 32.8 30.6 32.1 
Query 7 20.1 13.4 20.1 20.1 20.1 19.4 20.9 20.1 20.1 11.9 20.1 19.4 19.4 
Query 8 26.9 23.9 28.4 24.6 25.4 24.6 25.4 25.4 24.6 23.9 25.4 23.9 25.4 
Query 9 26.9 22.4 27.6 26.1 24.6 23.9 26.1 25.4 24.6 20.1 24.6 23.1 25.4 
Query 10 21.6 14.9 21.6 23.1 21.6 21.6 23.1 21.6 21.6 15.7 21.6 21.6 21.6 
Average 22.5 17.5 23 20.7 22.2 21.4 21 22.2 21.6 17.3 21.5 20.3 21.6 
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Table 4: The Percentage of Actives Obtain For Each Active with Average of 10 Target(Active 4) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THE PERCENTAGE OF ACTIVES 
Tan Rus Bar Sim Cos Kul For Fos Per Simp Sti Yul Den 

Different 
Query  

10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10%
Query 1 0.45 1.35 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.9 0.45 0.45 0.45 
Query 2 10.3 5.38 9.87 7.17 10.3 9.87 7.17 10.3 9.87 6.73 9.87 7.62 9.42 
Query 3 22.4 17 23.3 17.9 23.3 23.8 19.7 23.8 22.9 17.5 22.9 23.8 23.3 
Query 4 2.24 1.79 2.69 3.14 2.24 1.79 4.48 2.24 2.24 2.69 2.24 2.69 2.69 
Query 5 23.8 22 23.8 18.4 22.4 22.9 19.3 22.9 22.4 22.4 22 22.9 23.8 
Query 6 20.2 14.3 20.2 16.1 19.7 19.3 17 19.3 19.7 14.8 19.7 18.4 20.2 
Query 7 28.3 26 28.7 19.3 28.3 28.3 20.6 28.3 28.3 23.8 28.3 28.7 28.7 
Query 8 29.6 25.1 28.7 20.6 29.1 29.1 22 29.1 29.1 23.8 30 30 29.6 
Query 9 29.6 26 30 22 29.6 30.5 22.9 29.6 29.6 23.3 29.6 30.5 30 
Query 10 23.8 15.2 24.2 17.9 24.2 23.3 19.7 25.1 23.8 18.4 23.3 22.9 24.2 
Average 19.2 15.4 19.2 14.3 19 18.9 15.3 19.1 18.8 15.4 18.8 18.8 18.4 
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Table 5 : The Percentage of Actives Obtain For Each Active with Average of 10 Target(Active 5) 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

THE PERCENTAGE OF ACTIVES 
Tan Rus Bar Sim Cos Kul For Fos Per Simp Sti Yul Den 

Different 
Query  

10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10%
Query 1 6 10 6 6 6 6 6 6 6 7 6 6 6 
Query 2 6 11 5 4 5 4 4 5 5 5 5 4 4 
Query 3 4 9 5 3 4 3 3 3 4 4 4 3 4 
Query 4 49 40 44 24 49 45 17 49 48 23 48 33 4 
Query 5 13 25 10 7 12 11 7 12 10 10 11 8 45 
Query 6 19 23 20 16 19 19 12 19 20 13 20 12 10 
Query 7 14 25 10 7 14 10 7 14 11 10 11 9 19 
Query 8 18 25 15 6 19 17 5 19 16 6 16 11 10 
Query 9 23 33 19 10 23 22 11 23 22 21 22 17 22 
Query 10 46 45 28 35 42 40 22 43 42 23 42 29 39 
Average 19.9 24.6 16.2 11.8 19.4 17.7 9.4 19.3 18.4 12.2 18.5 13.2 16.3
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Table 6 : The Percentage of Actives Obtain For Each Active with Average of 10 Target(Active 6) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

THE PERCENTAGE OF ACTIVES 
Tan Rus Bar Sim Cos Kul For Fos Per Simp Sti Yul Den 

Different 
Query  

10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10%
Query 1 6 17 4.5 3 7.5 11 5 8 7.5 17.5 7.5 6 7 
Query 2 16 8.5 11.5 14.5 16 16 12 16 15.5 14 15.5 13.5 15.5 
Query 3 17 10 12 13.5 16.5 15 12 16.5 15 14 15.5 12 14 
Query 4 11 15 12.5 13.5 10.5 15 13 11.5 10 26.5 10 12.5 11 
Query 5 9.5 24 13.5 11.5 12 16.5 13 12.5 12 25 12 15 11.5 
Query 6 16 12 13.5 14.5 17 18.5 13.5 17 17 28.5 17 17.5 17 
Query 7 17 6.5 16 17.5 18 20.5 17 18 18 6.5 18 17.5 18 
Query 8 15 9 14 14 15 15 15.5 15 15 20.5 15 14.5 14.5 
Query 9 15.5 1 12 14.5 18 24 14.5 18.5 17 22.5 17.5 17.5 16.5 
Query 10 15.5 1 12 14.5 18 24.5 14.5 18.5 17 22.5 17.5 17.5 16.5 
Average 13.9 10.4 12.2 13.1 14.9 17.6 13 15.2 14.4 19.8 14.6 14.4 14.2 
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Table 7: The Percentage of Actives Obtain For Each Active with Average of 10 Target (Active 7) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

THE PERCENTAGE OF ACTIVES 
Tan Rus Bar Sim Cos Kul For Fos Per Simp Sti Yul Den 

Different 
Query  

10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10%
Query 1 21.5 20 21 15.5 21.5 21 15.5 21.5 21.5 21 21.5 21 21 
Query 2 39 34.5 41.5 39 39 42 36.5 39 42 37 42 40 42.5 
Query 3 44.5 40 45 41 44.5 44 39 44.5 44.5 40.5 44.5 43 45 
Query 4 25 24 26 22.5 25 24 22 25 24.5 19 24.5 23 25 
Query 5 34 28.5 31.5 28 33.5 33.5 26 33.5 33 27 33 31.5 32.5 
Query 6 40 35 38 35 39 40 34 39 38 36.5 39.5 37.5 39 
Query 7 48 39.5 47 44 47.5 47.5 41.5 47.5 47.5 43.5 47.5 48.5 47.5 
Query 8 42 34.5 42 40.5 42 42.5 36.5 41.5 42.5 37.5 42.5 42.5 43 
Query 9 31.5 26 32 30 31.5 30 25.5 31.5 31.5 25.5 31.5 31.5 31.5 
Query 10 30.5 26 31.5 30.5 30.5 31 23.5 30.5 31 25.5 31 30.5 31.5 
Average 35.7 30.8 35.6 32.6 35.4 35.6 30 35.4 35.6 31.3 35.8 34.9 35.9 
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APPENDIX F 

PERCENTAGE OF ACTIVES FUSIONS OF COEFFICIENT NON-

WEIGHTS (10 Queries) COMBINATION COMPARED WITH GA WEIGHTS 

(10 Queries) COMBINATION FOR EACH ACTIVE FUSION. 
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Table 1:  The Percentage of Active top 10% on Active1 fusions of coefficient 

Compared with GA Active1 Fusions. 

 
 

 THE PERCENTAGE OF ACTIVES 
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 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 

Active1 14.6 14.7 14.5 15.5 14.6 16 15.1 15.1 15.6 15.1 15.1 17 
GA 

Active1 14.8 14.8 14.3 16.8 14.6 16 15.1 15.1 15.6 15.1 15 17 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1  The Percentage Average of Top 10% Active1 versus the GA Active1 

Fusions of Coefficients
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Table 2:  The Percentage of Active top 10% on Active2 fusions of coefficients 

Compared with GA Active2 Fusion. 

 
 

 THE PERCENTAGE OF ACTIVES 
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 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 

Active2 22.3 22.3 22.7 24.7 22.5 24.3 22.7 23 22.6 22.9 23 24.4 
GA 

Active2 22.3 22.4 22.7 24.7 22.5 24.3 22.6 23 22.6 22.8 23 24.4 
 

 
 

 

 

 
 
 
 
 

 
 
 

Figure 2 The Percentage Average of Top 10% Active2 versus the GA Active2 

Fusions of Coefficients 
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Table 3 : The Percentage of Active top 10% on Active3 fusions of coefficients 

Compared with GA Active3 Fusion. 
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 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 

Active3 20.7 20.4 19.3 22.9 19.5 22.2 21.7 21.9 20.9 22 21.1 21.9 
GA 

Active3 20.6 20.4 19.4 23.1 19.6 22.2 21.6 21.9 20.9 22 20.7 21.9 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3  The Percentage Average of Top 10% Active3 versus the GA Active3 

Fusions of Coefficients 
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Table 4: The Percentage of Active top 10% on Active4 fusions of 

coefficients Compared with GA Active4 Fusion. 

 
 

 THE PERCENTAGE OF ACTIVES 
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 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 

Active4 17.8 18 18.3 19.8 18.8 19.5 19.6 19.4 19.4 20 19.3 19.7 
GA 

Active4 18.8 19 19.1 19.8 18.8 19.5 19.4 19.4 19.4 19.3 19.3 19.7 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4  The Percentage Average of Top 10% Active4 versus the GA Active4 

Fusions of Coefficients 
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Table 5: The Percentage of Active top 10% on Active5 fusions of 

coefficients compared with GA Active5 Fusion. 

 

 THE PERCENTAGE OF ACTIVES 
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 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 

Active5 23.3 23 22.7 18.9 22.8 19.6 21.6 21.5 21.5 21.8 21.5 19 
GA 

Active5 23.3 23 22.8 18.9 22.9 19.5 21.7 21.9 21.5 21.8 21.6 19 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 

Figure 5  The Percentage Average of Top 10% Active5 versus the GA Active5 

Fusions of Coefficients. 
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Table 6 : The Percentage of Active top 10% on Active6 fusions of coefficients 

Compared with GA Active6 Fusion. 
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 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 

Active6 19.7 19.8 20.6 13.3 21.1 14.2 19 18.5 19.2 18.5 19.3 14.3 
GA 

Active6 19.7 19.8 20.6 13.3 21.2 14.2 19 18.5 19.2 18.4 19.3 14.3 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6   The Percentage Average of Top 10% Active6 versus the GA Active6 

Fusions of Coefficients 
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Table 7 : The Percentage of Active top 10% on Active7 fusions of coefficients 

compared with GA Active7 Fusion. 
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 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 

Active7 34.8 34.7 35.4 35.6 34.8 35.6 35.6 35.1 35.1 35 34.95 35.1 
GA 

Active7 35.6 34.7 35.4 35.5 34.9 35.7 35.6 35.1 35.1 35 35.3 35.5 
 
 
 
 

 

 

Figure 7   The Percentage Average of Top 10% Active7 versus the GA Active7 

Fusions of Coefficients 
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